共查询到20条相似文献,搜索用时 0 毫秒
1.
The extension of (13)C-nuclear magnetic resonance (NMR) techniques to study cellular metabolism over recent years has provided valuable data supporting the occurrence, diversity and extent of carbon cycling in the carbohydrate metabolism of micro-organisms. The occurrence of such cycles, resulting from the simultaneous operation of different and sometimes opposite individual steps, is inherently related to the network organisation of cellular metabolism. These cycles are tentatively classified here as 'reversibility', 'metabolic' and 'substrate' cycles on the basis of their balance in carbon and cofactors. Current hypotheses concerning the physiological relevance of carbohydrate cycles are discussed in light of the (13)C-NMR data. They most likely represent system-level mechanisms for coherent and timely partitioning of carbon resources to fit with the various biosynthetic, energetic or redox needs of cells and/or additional strategies in the adaptive capacity of micro-organisms to face variation in environmental conditions. 相似文献
2.
Thompson MB Stewart JR Speake BK Hosie MJ Murphy CR 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2002,131(4):631-643
Historically, Australia has been important in the study of, and the development of hypotheses aimed at understanding, the evolution of viviparity in amniote vertebrates. Part of the importance of Australia in the field results from a rich fauna of skinks, including one of the broadest ranges of diversity of placental structures within one geographic region. During the last decade, we have focussed our studies on one lineage, the Eugongylus group of skinks of the subfamily Lygosominae because it contains oviparous species and some that exhibit complex placentae. Our specific objective has been to attempt to understand the fundamental steps required when viviparity, and ultimately complex placentae, evolve from oviparous ancestors. We have taken a three-prong approach: (1) detailed study of the morphology and ontogeny of the placentae of key species at the light microscope level; (2) study of changes in the uterus associated with pregnancy, or the plasma membrane transformation; and (3) measures of the net exchange of nutrients across the placenta or eggshell of key species. In turn, we have found that: (1) details of the morphology and ontogeny of placentae are more complex that originally envisaged, and that the early conclusions about a sequence in the evolution of complex placentae was naïve; (2) a plasma membrane transformation occurs in viviparous, but not oviparous lizards, and thus may be a fundamental feature of the evolution of viviparity in amniotes; and (3) species with more complex chorioallantoic placentae tend to transport more nutrients across the placenta during pregnancy than those with simpler chorioallantoic placentae but, because the correlation is not tight, the importance of the omphaloplacenta in transporting nutrients may have been overlooked. Also, the composition of yolk of highly matrotrophic species is broadly similar, but not identical, to the yolk of oviparous species. Some of the interpretation of our data within the context of our specific objective is not yet possible, pending the publication of a robust phylogeny of Eugongylus group skinks. Once such a phylogeny is available, we are in a position to propose specific hypotheses about the evolution of viviparity that can be tested using another lineage of amniotes, possibly Mabuya group skinks. 相似文献
3.
Timothy G. Barraclough 《Diversity & distributions》2006,12(1):21-26
The spectacular diversity of the Cape flora has promoted wide speculation on the evolutionary processes behind its origins, but until recently these ideas could not be tested rigorously due to the almost complete absence of a fossil record for the region. Now, molecular phylogenetic approaches, combined with analyses of ecological and biogeographical information, offer the potential to test key hypotheses about speciation of so-called Cape clades of flowering plants. We outline the main theories and how they might be tested by phylogenetic approaches. One conclusion is that population level studies of particular species complexes are now needed to complement the growing volume of phylogenetic information for Cape clades and to provide better understanding of mechanisms of population divergence in the Cape. Another is that comparisons between Cape and non-Cape clades are needed to confirm whether speciation is indeed faster in the Cape region. An alternative possibility, that extinction rates are lower, should also be considered in these comparisons. By virtue of the ongoing, coordinated efforts by a global team of botanists, the Cape is now uniquely placed for exploring the origins and assembly of a regional assemblage or biome. 相似文献
4.
Strasburg JL Sherman NA Wright KM Moyle LC Willis JH Rieseberg LH 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2012,367(1587):364-373
Genome scans have become a common approach to identify genomic signatures of natural selection and reproductive isolation, as well as the genomic bases of ecologically relevant phenotypes, based on patterns of polymorphism and differentiation among populations or species. Here, we review the results of studies taking genome scan approaches in plants, consider the patterns of genomic differentiation documented and their possible causes, discuss the results in light of recent models of genomic differentiation during divergent adaptation and speciation, and consider assumptions and caveats in their interpretation. We find that genomic regions of high divergence generally appear quite small in comparisons of both closely and more distantly related populations, and for the most part, these differentiated regions are spread throughout the genome rather than strongly clustered. Thus, the genome scan approach appears well-suited for identifying genomic regions or even candidate genes that underlie adaptive divergence and/or reproductive barriers. We consider other methodologies that may be used in conjunction with genome scan approaches, and suggest further developments that would be valuable. These include broader use of sequence-based markers of known genomic location, greater attention to sampling strategies to make use of parallel environmental or phenotypic transitions, more integration with approaches such as quantitative trait loci mapping and measures of gene flow across the genome, and additional theoretical and simulation work on processes related to divergent adaptation and speciation. 相似文献
5.
After a brief overview of NMR and X-ray crystallography studies on protein flexibility under pressure, we summarize the effects of hydrostatic pressure on the native fold of azurin from Pseudomonas aeruginosa as inferred from the variation of the intrinsic phosphorescence lifetime and the acrylamide bimolecular quenching rate constants of the buried Trp residue. The pressure/temperature response of the globular fold and modulation of its dynamical structure is analyzed both in terms of a reduction of internal cavities and of the hydration of the polypeptide. The study of the effect of two single point cavity forming mutations, F110S and I7S, on the unfolding volume change (ΔV(0)) of azurin and on the internal dynamics of the protein fold under pressure demonstrate that the creation of an internal cavity will enhance the plasticity and lower the stability of the globular structure. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches. 相似文献
6.
Chris D. Jiggins W. Owen McMillan Walter Neukirchen James Mallet 《Biological journal of the Linnean Society. Linnean Society of London》1996,59(3):221-242
To understand speciation we need to study the genetics and ecology of intermediate cases where interspecific hybridization still occurs. Two closely related species of Heliconius butterflies meet this criterion: Heliconius himera is endemic to dry forest and thorn scrub in southern Ecuador and northern Peru, while its sister species, H. erato , is ubiquitous in wet forest throughout south and central America. In three known zones of contact, the two species remain distinct, while hybrids are found at low frequency. Collections in southern Ecuador show that the contact zone is about 5 km wide, half the width of the narrowest clines between colour pattern races of H. erato. The narrowness of this dine argues that very strong selection (s ≅ 1) is maintaining the parapatric distributions of these two species. The zone is closely related with a habitat transition from wet to dry forest, which suggests that the narrow zone of parapatry is maintained primarily by ecological adaptation. Selection on colour pattern loci, assortative mating and hybrid inviability may also be important. The genetics of hybrids between the two species shows that the major gene control of pattern elements is similar to that found in previous studies of H. erato races, and some of the loci are homologous. This suggests that similar genetic processes are involved in the morphological divergence of species and races. Evidence from related Heliconius supports a hypothesis that ecological adaptation is the driving force for speciation in the group. 相似文献
7.
Some neuroscientists argue that detailed maps of synaptic connectivity--wiring diagrams--will be needed if we are to understand how the brain underlies behavior and how brain malfunctions underlie behavioral disorders. Such large-scale circuit reconstruction, which has been called connectomics, may soon be possible, owing to numerous advances in technologies for image acquisition and processing. Yet, the community is divided on the feasibility and value of the enterprise. Remarkably similar objections were voiced when the Human Genome Project, now widely viewed as a success, was first proposed. We revisit that controversy to ask if it holds any lessons for proposals to map the connectome. 相似文献
8.
Chang S 《The international journal of biochemistry & cell biology》2005,37(5):991-999
The molecular mechanisms involved in mammalian aging and the consequent organ dysfunction/degeneration pathologies are not well understood. Studies of progeroid syndromes such as Werner Syndrome have advanced our understanding of how certain genetic pathways can influence the aging process on both cellular and molecular levels. In addition, improper maintenance of telomere length and the consequent cellular responses to dysfunctional telomeres have been proposed to promote replicative senescence that impact upon the onset of premature aging and cancer. Recent studies of the telomerase-Werner double null mouse link telomere dysfunction to accelerated aging and tumorigenesis in the setting of Werner deficiency. This mouse model thus provides a unique genetic platform to explore molecular mechanisms by which telomere dysfunction and loss of WRN gene function leads to the onset of premature aging and cancer. 相似文献
9.
Mallet J 《Trends in ecology & evolution》2006,21(7):386-393
Studies of hybrid inviability, sterility and 'speciation genes' in Drosophila have given insight into the genetic changes that result in reproductive isolation. Here, I survey some extraordinary and important advances in Drosophila speciation research. However, 'reproductive isolation' is not the same as 'speciation', and this Drosophila work has resulted in a lopsided view of speciation. In particular, Drosophila are not always well-suited to investigating ecological and other selection-driven primary causes of speciation in nature. Recent advances have made use of far less tractable, but more charismatic organisms, such as flowering plants, vertebrates and larger insects. Work with these organisms has complemented Drosophila studies of hybrid unfitness to provide a more complete understanding of speciation. 相似文献
10.
Martin Högbom 《Journal of biological inorganic chemistry》2010,15(3):339-349
The manganese/iron-carboxylate proteins make up a recently discovered group of proteins that contain a heterodinuclear Mn/Fe
redox cofactor. The chemical potential of the heterodinuclear metal site is just starting to be characterized, but available
data suggest that it may have capabilities for similarly versatile chemistry as the extensively studied diiron-carboxylate
cofactor. The presently identified members of the manganese/iron-carboxylate proteins are all sequence homologues of the radical-generating
R2 subunit of class I ribonucleotide reductase, canonically a diiron protein. They are also commonly misannotated as such
in databases. In spite of the sequence similarity, the manganese/iron-carboxylate proteins form at least two functionally
distinct groups, radical-generating ribonucleotide reductase subunits and ligand-binding Mn/Fe proteins. Here, the presently
available sequences for the manganese/iron-carboxylate proteins are gathered, grouped, and analyzed. The analysis provides
sequence determinants that allow group identification of new sequences on the single-protein level. Key differences between
the groups are mapped on the known representative structures, providing clues to the structural prerequisites for metal specificity,
cofactor formation, and difference in function. The organisms that encode manganese/iron-carboxylate proteins are briefly
discussed; their environmental preference suggests that the Mn/Fe heterodinuclear cofactor is preferred by extremophiles and
pathogens with a particularly high relative presence in Archaea. 相似文献
11.
Fear, a reaction to a threatening situation, is a broadly adaptive feature crucial to the survival and reproductive fitness of individual organisms. By contrast, anxiety is an inappropriate behavioral response often to a perceived, not real, threat. Functional imaging, biochemical analysis, and lesion studies with humans have identified the HPA axis and the amygdala as key neuroanatomical regions driving both fear and anxiety. Abnormalities in these biological systems lead to misregulated fear and anxiety behaviors such as panic attacks and post-traumatic stress disorders. These behaviors are often treated by increasing serotonin levels at synapses, suggesting a role for serotonin signaling in ameliorating both fear and anxiety. Interestingly, serotonin signaling is highly conserved between mammals and invertebrates. We propose that genetically tractable invertebrate models organisms, such as Drosophila melanogaster and Caenorhabditis elegans, are ideally suited to unravel the complexity of the serotonin signaling pathways. These model systems possess well-defined neuroanatomies and robust serotonin-mediated behavior and should reveal insights into how serotonin can modulate human cognitive functions. 相似文献
12.
13.
14.
Dr. Ellen R. Wiebe''s study of the use of methotrexate and misoprostol in combination for early termination of intrauterine pregnancy (see pages 165 to 170 of this issue) is the first Canadian study of the use of this drug combination for medical abortion. The authors compare Wiebe''s findings with those of earlier studies on methotrexate and misoprostol, as well as with European findings on the use of mifepristone with prostaglandins. The authors argue that although the methotrexate-misoprostol combination appears to be reasonably safe for the woman, the failure rate and the teratogenicity of methotrexate and misoprosol give cause for concern. The authors conclude that medical abortions ought to be offered only where there is adequate access to laboratory and surgical facilities and where losses to follow-up are systematically minimized to reduce the potential for continued pregnancy resulting in congenital abnormality. 相似文献
15.
MARÍA JOSÉ RUIZ-LÓPEZ EDUARDO R. S. ROLDÁN‡ GERARDO ESPESO† MONTSERRAT GOMENDIO§ 《Molecular ecology》2009,18(7):1352-1364
Relationships between pedigree coefficients of inbreeding and molecular metrics are generally weak, suggesting that measures of heterozygosity estimated using microsatellites may be poor surrogates of genome-wide inbreeding. We compare three endangered species of gazelles ( Gazella ) with different degrees of threat in their natural habitats, for which captive breeding programmes exist. For G. dorcas, the species with the largest founding population, the highest and most recent number of founding events, the correlation between pedigree coefficient of inbreeding and molecular metrics was higher than for outbred populations of mammals, probably because it has both higher mean f and variance. For the two species with smaller founding populations, conventional assumptions about founders, i.e. outbred and unrelated, are unrealistic. When realistic assumptions about the founders were made, clear relationships between pedigree coefficients of inbreeding and molecular metrics were revealed for G. cuvieri. This population had a small founding population, but it did experience admixture years later; thus, the relationship between inbreeding and molecular metrics in G. cuvieri is very similar to the expected values but lower than in G. dorcas . In contrast, no relationship was found for G. dama mhorr which had a much smaller founding population than had been previously assumed, which probably had high levels of inbreeding and low levels of genetic variability, and no admixture. In conclusion, the strength of the association between pedigree coefficient of inbreeding and molecular metrics among endangered species depends on the level of inbreeding and genetic variability present in the founding population, its size and its history. 相似文献
16.
Veronica Rivi Cristina Benatti Ken Lukowiak Chiara Colliva Silvia Alboni Fabio Tascedda Johanna M.C. Blom 《Biological reviews of the Cambridge Philosophical Society》2021,96(4):1590-1602
This review describes the advantages of adopting a molluscan complementary model, the freshwater snail Lymnaea stagnalis, to study the neural basis of learning and memory in appetitive and avoidance classical conditioning; as well as operant conditioning of its aerial respiratory and escape behaviour. We firstly explored ‘what we can teach Lymnaea’ by discussing a variety of sensitive, solid, easily reproducible and simple behavioural tests that have been used to uncover the memory abilities of this model system. Answering this question will allow us to open new frontiers in neuroscience and behavioural research to enhance our understanding of how the nervous system mediates learning and memory. In fact, from a translational perspective, Lymnaea and its nervous system can help to understand the neural transformation pathways from behavioural output to sensory coding in more complex systems like the mammalian brain. Moving on to the second question: ‘what can Lymnaea teach us?’, it is now known that Lymnaea shares important associative learning characteristics with vertebrates, including stimulus generalization, generalization of extinction and discriminative learning, opening the possibility to use snails as animal models for neuroscience translational research. 相似文献
17.
Little MH 《Organogenesis》2011,7(4):229-241
The increasing prevalence of chronic kidney disease in the absence of new treatment modalities has become a strong driver for innovation in nephrology. An increasing understanding of stem cell biology has kindled the prospects of regenerative options for kidney disease. However, the kidney itself is not a regenerative organ, as all the nephrons are formed during embryonic development. Here, we will investigate advances in the molecular genetics of renal organogenesis, including what this can tell us about lineage relationships, and discuss how this may serve to inform us about both the normal processes of renal repair and options for regenerative therapies. 相似文献
18.
Isolated populations with novel phenotypes present an exciting opportunity to uncover the genetic basis of ecologically significant adaptation, and genomic scans have often, but not always, led to candidate genes directly related to an adaptive phenotype. However, in many cases these populations were established by a severe bottleneck, which can make identifying targets of selection problematic. Here, we simulate severe bottlenecks and subsequent selection on standing variation, mimicking adaptation after establishment of a new small population, such as an island or an artificial selection experiment. Using simulations of single loci under positive selection and population genetics theory, we examine how population size and age of the population isolate affect the ability of outlier scans for selection to identify adaptive alleles using both single‐site measures and haplotype structure. We find and explain an optimal combination of selection strength, starting frequency, and age of the adaptive allele, which we refer to as a Goldilocks zone, where adaptation is likely to occur and yet the adaptive variants are most likely to derive from a single ancestor (a ‘hard’ selective sweep); in this zone, four commonly used statistics detect selection with high power. Real‐world examples of both island colonization and experimental evolution studies are discussed. Our study provides concrete considerations to be made before embarking on whole‐genome sequencing of differentiated populations. 相似文献
19.
Background and Aims
The Neotropical tribe Trimezieae are taxonomically difficult. They are generally characterized by the absence of the features used to delimit their sister group Tigridieae. Delimiting the four genera that make up Trimezieae is also problematic. Previous family-level phylogenetic analyses have not examined the monophyly of the tribe or relationships within it. Reconstructing the phylogeny of Trimezieae will allow us to evaluate the status of the tribe and genera and to examine the suitability of characters traditionally used in their taxonomy.Methods
Maximum parsimony and Bayesian phylogenetic analyses are presented for 37 species representing all four genera of Trimezieae. Analyses were based on nrITS sequences and a combined plastid dataset. Ancestral character state reconstructions were used to investigate the evolution of ten morphological characters previously considered taxonomically useful.Key Results
Analyses of nrITS and plastid datasets strongly support the monophyly of Trimezieae and recover four principal clades with varying levels of support; these clades do not correspond to the currently recognized genera. Relationships within the four clades are not consistently resolved, although the conflicting resolutions are not strongly supported in individual analyses. Ancestral character state reconstructions suggest considerable homoplasy, especially in the floral characters used to delimit Pseudotrimezia.Conclusions
The results strongly support recognition of Trimezieae as a tribe but suggest that both generic- and species-level taxonomy need revision. Further molecular analyses, with increased sampling of taxa and markers, are needed to support any revision. Such analyses will help determine the causes of discordance between the plastid and nuclear data and provide a framework for identifying potential morphological synapomorphies for infra-tribal groups. The results also suggest Trimezieae provide a promising model for evolutionary research. 相似文献20.
Jakob D. Wikstrom Gilad Twig Orian S. Shirihai 《The international journal of biochemistry & cell biology》2009,41(10):1914-1927
A growing body of evidence shows that mitochondria are heterogeneous in terms of structure and function. Increased heterogeneity has been demonstrated in a number of disease models including ischemia-reperfusion and nutrient-induced beta cell dysfunction and diabetes. Subcellular location and proximity to other organelles, as well as uneven distribution of respiratory components have been considered as the main contributors to the basal level of heterogeneity. Recent studies point to mitochondrial dynamics and autophagy as major regulators of mitochondrial heterogeneity. While mitochondrial fusion mixes the content of the mitochondrial network, fission dissects the mitochondrial network and generates depolarized segments. These depolarized mitochondria are segregated from the networking population, forming a pre-autophagic pool contributing to heterogeneity. The capacity of a network to yield a depolarized daughter mitochondrion by a fission event is fundamental to the generation of heterogeneity. Several studies and data presented here provide a potential explanation, suggesting that protein and membranous structures are unevenly distributed within the individual mitochondrion and that inner membrane components do not mix during a fusion event to the same extent as the matrix components do. In conclusion, mitochondrial subcellular heterogeneity is a reflection of the mitochondrial lifecycle that involves frequent fusion events in which components may be unevenly mixed and followed by fission events generating disparate daughter mitochondria, some of which may fuse again, others will remain solitary and join a pre-autophagic pool. 相似文献