首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study documents the time course profiles for simultaneous measures of: the electrographic signs of sleep and wakefulness, ponto-geniculo-occipital (PGO) waves, and extracellular discharge potentials for single cells in the dorsal raphe nucleus (DRN). These measures were obtained from intact, undrugged cats across 177 sleep cycles. Ninety-one of these sleep cycles were recorded with no prior forced activity. Forced activity previously has been shown to powerfully alter the temporal organization of sleep by shortening the duration of both the sleep cycle and the ultradian rhythm of DRN discharge. The present paper evaluated the hypothesis that DRN discharge time course might regulate the sleep cycle. These experiments documented the phase relationship between the time course of DRN discharge and the electrographic signs of sleep. These phase relationship were examined by determining whether forced locomotor activity could dissociate the time course profile for behavioral states, PGO waves, and DRN discharge. The results revealed that the time course of DRN discharge and PGO waves were always phase-locked to the time course of the ultradian sleep cycle. Furthermore, the results show that changes in DRN discharge consistently precede changes in PGO waves, and behavioral state. Since a cause must precede an effect, these data are consistent with the hypothesis that the DRN may be causally involved in sleep cycle regulation. These temporal data also provide parameter values for the continued evaluation of cellularly based, mathematical models of sleep cycle control.  相似文献   

2.
The genetic basis of rest–activity circadian alternation in animal behavior is considered in the evolutionary range from bacteria to mammals. We scrutinize various concepts of sleep development in the animal world evolution as well as the I.G. Karmanova’s theory of the sleep–wake cycle evolution in vertebrates, beginning from wakefulness–primary sleep (or protosleep) in fish and amphibians through wakefulness–intermediate sleep in reptiles to wakefulness–slow wave sleep (SWS) and paradoxical sleep (PS) in birds and mammals. Primary sleep is represented by the three major sleep-like immobility states: catalepsy, catatonia and cataplexy. The main behavioral, somatovegetative and neurophysiological characteristics of primary sleep and the ancient activation pattern during primary sleep are described. The issues of which of these sleep manifestations are homologous to SWS, PS, hibernation and stress response are discussed. In conclusion, the general diagram of sleep evolution in vertebrates is presented, and the I.G. Karmanova’s contribution to evolutionary somnology is highlighted.  相似文献   

3.
From a physiological perspective the sleep-wake cycle can be envisioned as a sequence of three physiological states (wakefulness, non-rapid eye movement, NREM, sleep and REM sleep) which are defined by a particular neuroendocrine-immune profile regulating the metabolic balance, body weight and inflammatory responses. Sleep deprivation and circadian disruption in contemporary "24/7 Society" lead to the predominance of pro-orexic and proinflammatory mechanisms that contribute to a pandemic metabolic syndrome (MS) including obesity, diabetes and atherosclerotic disease. Thus, a successful management of MS may require a drug that besides antagonizing the trigger factors of MS could also correct a disturbed sleep-wake rhythm. This review deals with the analysis of the therapeutic validity of melatonin in MS. Melatonin is an effective chronobiotic agent changing the phase and amplitude of the sleep/wake rhythm and having cytoprotective and immunomodulatory properties useful to prevent a number of MS sequels. Several studies support that melatonin can prevent hyperadiposity in animal models of obesity. Melatonin at a low dose (2-5 mg/day) has been used for improving sleep in patients with insomnia and circadian rhythm sleep disorders. More recently, attention has been focused on the development of potent melatonin analogs with prolonged effects (ramelteon, agomelatine, tasimelteon, TK 301). In clinical trials these analogs were employed in doses considerably higher than those usually employed for melatonin. In view that the relative potencies of the analogs are higher than that of the natural compound, clinical trials employing melatonin doses in the range of 50-100 mg/day are needed to assess its therapeutic value in MS.  相似文献   

4.
In order to study the functional interaction between the delta sleep and the REM sleep some psychophysiological features of REM sleep were examined in REM-onset (without any preceding delta sleep--"early REM period") and in the REM period (REMP) terminating the normal sleep cycle (with the preceding delta sleep) of 92 daytime sleep attacks in 10 narcoleptic patients. Under these conditions the significant differences exist in the characteristics of the dream reports and in subjective estimations of sleep quality and duration. Sleep was evaluated as "superficial" and underestimations of sleep duration took place after an early REMP. Correct estimations of sleep duration and evaluations of sleep as "deep" dominated after REMP enging sleep cycles. The results obtained indicate the functional interaction between the delta sleep and REM sleep existing in the sleep cycle and largely determining the psychic content of the brain activity in the REM sleep.  相似文献   

5.
《Chronobiology international》2013,30(9-10):1797-1812
Although evening preference has recently been identified as a risk factor for depression, it has not been substantiated whether evening preference is a direct risk factor for depressive states, or if it is associated secondarily through other factors, such as delayed sleep timing and shortened sleep duration. The objective of this study is to investigate associations in Japanese adult subjects between evening preference and incidence of depressive states, adjusting for various sleep parameters related to depressive states. The Morningness-Eveningness Questionnaire (MEQ), the Pittsburgh Sleep Quality Index (PSQI), and the Center for Epidemiologic Studies Depression Scale (CES-D) were administered to 1170 individuals (493 males/677 females; mean and range 38.5 and 20–59 yrs) to assess their diurnal preferences, sleeping states, and presence of depression symptoms. Subjects were classified into five chronotypes based on MEQ scores. Evening preference was associated with delayed sleep timing, shortened sleep duration, deteriorated subjective sleep quality, and worsened daytime sleepiness. Logistic regression analysis demonstrated that the extreme evening type (odds ratio [OR]?=?1.926, p?=?.018) was associated with increased incidence of depressive states and that the extreme morning type (OR?=?0.342, p?=?.038) was associated with the decreased incidence of depressive states, independent of sleep parameters, such as nocturnal awakening (OR?=?1.844, p?<?.001), subjective sleep quality (OR?=?2.471, p?<?.001), and daytime sleepiness (OR?=?1.895, p?=?.001). However, no significant associations were observed between the incidence of depressive states and sleep duration, sleep timing, and sleep debt (levels of insufficient sleep). Although the findings of this study do not demonstrate a causative relationship between evening preference and depression, they do suggest the presence of functional associations between mood adjustment and biological clock systems that regulate diurnal preference. They also suggest that evening preference might increase susceptibility to the induction of mood disorders. (Author correspondence: )  相似文献   

6.
Among mammalian species, the time spent in the two main "architectural" states of sleep--slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep--varies greatly. Previous comparative studies of sleep architecture found that larger mammals, those with bigger brains, and those with higher absolute basal metabolic rates (BMR) tended to engage in less SWS and REM sleep. Species experiencing a greater risk of predation also exhibited less SWS and REM sleep. In all cases, however, these studies lacked a formal phylogenetic and theoretical framework and used mainly correlational analyses. Using independent contrasts and an updated data set, we extended existing approaches with path analysis to examine the integrated influence of anatomy, physiology, and ecology on sleep architecture. Path model structure was determined by nonmutually exclusive hypotheses for the function of sleep. We found that species with higher relative BMRs engage in less SWS, whereas species with larger relative brain masses engage in more REM sleep. REM sleep was the only sleep variable strongly influenced by predation risk; mammals sleeping in riskier environments engage in less REM sleep. Overall, we found support for some hypotheses for the function of sleep, such as facilitating memory consolidation or learning, but not others, such as energy conservation.  相似文献   

7.
Studies of somatosensory evoked potentials (SSEPs) were conducted in various functional states of sleep-alertness cycle (relaxed alertness, 2-nd and delta-stages of slow sleep, rapid sleep) in 7 healthy subjects and 8 patients with polysymptom narcolepsy. Integrated amplitude (IA) was calculated in poststimulus intervals, accordingly to SSEPs division into groups of early (20-80 ms), mean (80-200 ms) and late (200-400 ms) components. It has been shown that in patients with polysymptom narcolepsy IA of all SSEPs components in alertness was lower than in healthy subjects; during sleep higher IA values of earlier components were found in comparison with healthy subjects and lower values--of later negative wave at slow sleep. Psychophysiological interpretation of high amplitude negative shift in the area of late SSEPs components during slow sleep is suggested.  相似文献   

8.
9.
Patients with human African trypanosomiasis (HAT, sleeping sickness), due to the inoculation of Trypanosoma brucei gambiense or rhodesiense by the tsetse fly, are "sleepy by day and restless by night." The first 24 h polysomnographic recording (electroencephalogram [EEG], electromyogram [EMG], electrooculogram [EOG]), showing a disappearance of the 24 h rhythmicity of sleep and wakefulness, was performed in 1988. Thereafter, our team recorded 18 patients and 6 control volunteers at bed rest during 24 h sessions. Blood samples were taken hourly from 8 of the patients through a venous catheter and every 10 minutes from the remaining 10 patients. Plasma cortisol, prolactin, growth hormone (GH), melatonin, and plasma renin activity were analyzed. No disruptions of the circadian rhythms of sleep and wakefulness were described in the 6 healthy African subjects, and there also were no disturbances of 24 h hormone profiles. The patients experienced a dysregulation of the circadian rhythmicity of sleep and wakefulness that was proportional to the severity of the disease. Sleep onset rapid eye movement (REM) episodes were more frequent in the most severely sick patients, who also showed major disruptions in the 24 h plasma hormonal profiles, with intermediate profiles being observed at earlier stages of the sickness. However, the relationship between hormonal secretions and the states of vigilance persisted. Contrary to the other hormones, melatonin secretion remained undisturbed. These findings indicate that, at the stage of meningoencephalitis, HAT represents a dysregulation of the sleep-wake cycle and sleep structure, rather than a hypersomnia; this dysregulation is proportional to the degree of severity of the clinical and biological symptoms. It is accompanied by a circadian dysrhythmia of hormonal secretions, although the relationship between hormone pulses and sleep states is preserved. We therefore favor the involvement of the serotonergic raphe nuclei-suprachiasmatic nuclei liaison in the reversible disturbance of the circadian rhythms of the sleep-wake cycle and of hormonal secretions.  相似文献   

10.
The development of fetal behaviour is reviewed. Fetal cutaneous and muscle sensory receptors are developed by the time movements are first seen. Human infants certainly respond to painful stimuli at 28 weeks. There is no clear evidence that prenatal "stress," e.g., maternal exposure to random noise and bright lights, impairs fetal development in the rat, on the contrary. Fetal diurnal rhythms appear in man and sheep before the development of sleep states; they are dependent on maternal corticosteroids, but the fetal mechanism is uncertain. With the development of sleep states (in late gestation in man and sheep, postnatally in the rat), the complex central control of behaviour is gradually established, but wakefulness is still of low incidence. The location of the sleep cycle generator is uncertain; the results of experimental lesions of the brainstem in fetal lambs appear incompatible with studies in adult rats and cats.  相似文献   

11.

Background

Although the induction of behavioural unconsciousness during sleep and general anaesthesia has been shown to involve overlapping brain mechanisms, sleep involves cyclic fluctuations between different brain states known as active (paradoxical or rapid eye movement: REM) and quiet (slow-wave or non-REM: nREM) stages whereas commonly used general anaesthetics induce a unitary slow-wave brain state.

Methodology/Principal Findings

Long-duration, multi-site forebrain field recordings were performed in urethane-anaesthetized rats. A spontaneous and rhythmic alternation of brain state between activated and deactivated electroencephalographic (EEG) patterns was observed. Individual states and their transitions resembled the REM/nREM cycle of natural sleep in their EEG components, evolution, and time frame (∼11 minute period). Other physiological variables such as muscular tone, respiration rate, and cardiac frequency also covaried with forebrain state in a manner identical to sleep. The brain mechanisms of state alternations under urethane also closely overlapped those of natural sleep in their sensitivity to cholinergic pharmacological agents and dependence upon activity in the basal forebrain nuclei that are the major source of forebrain acetylcholine. Lastly, stimulation of brainstem regions thought to pace state alternations in sleep transiently disrupted state alternations under urethane.

Conclusions/Significance

Our results suggest that urethane promotes a condition of behavioural unconsciousness that closely mimics the full spectrum of natural sleep. The use of urethane anaesthesia as a model system will facilitate mechanistic studies into sleep-like brain states and their alternations. In addition, it could also be exploited as a tool for the discovery of new molecular targets that are designed to promote sleep without compromising state alternations.  相似文献   

12.
Changes in spontaneous unit activity in the primary visual cortex during the sleep-waking cycle were studied in chronic experiments on dark-adapted cats. In the cell population studied activity in states of wakefulness and of paradoxical sleep did not differ significantly either in mean discharge frequency or in pattern. Activity of most cells in a state of slow sleep differed significantly from that in states of wakefulness and paradoxical sleep by the development of a "burst-pause" pattern in the unit discharges.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Moscow. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 343–349, July–August, 1976.  相似文献   

13.

Rapid eye movement (REM) sleep behavior disorder (RBD) and hypnagogic hallucinations are salient symptoms of abnormal and dissociated REM sleep that are frequently associated in serious neurological diseases. RBD is a strong, independent risk factor for hallucinations in narcolepsy (odds ratio: 4.3) and in Parkinson’s disease (odds ratio: 2.7). In Parkinson’s disease, RBD also predicts incident hallucinations and psychosis in prospective cohorts. Status dissociatus (a mixture of hallucinations, RBD, and dissociated sleep-wake states) is observed in patients with Guillain-Barré when hallucinating, but also in Lewy bodies dementia, delirium tremens, fatal familial insomnia, and Morvan’s chorea. This co-occurrence of RBD and visual hallucinations suggests a common, extensive lesion within REM sleep executive systems.

  相似文献   

14.
Cells that discharge in early expiration and inhibit other respiratory cells purportedly cause a separate phase of the respiratory cycle that has been named "postinspiration." Our objective was to study these postinspiratory cells in the intact unanesthetized cat during sleep, wakefulness, and behavioral inhibition of inspiration, but we were unable to find cells with strong and consistent activity confined to early expiration. Instead, we found that various cell types were active in early expiration. They included inspiratory-expiratory phase-spanning cells, retrofacial augmenting expiratory cells with bursts in early expiration, retrofacial decrementing expiratory cells, tonic expiratory cells, and cells with variable activity in the early part of expiration. Just as the cell types active during early expiration were heterogeneous so too were their activities during behavioral inhibition of inspiration and during sleep. These results suggest that the state of early expiration is determined by many different cell types rather than a single class of postinspiratory cells.  相似文献   

15.
《Chronobiology international》2013,30(8):1596-1608
Narcolepsy with cataplexy (NC) is a sleep disorder caused by the loss of the hypothalamic neurons producing hypocretin. The clinical hallmarks of the disease are excessive daytime sleepiness, cataplexy, other rapid eye movement (REM) sleep phenomena, and a fragmented wake-sleep cycle. Experimental data suggest that the hypocretin system is involved primarily in the circadian timing of sleep and wakefulness but also in the control of other biological functions such as thermoregulation. The object of this study was to determine the effects of the hypocretin deficit and of the wake-sleep cycle fragmentation on body core temperature (BcT) modulation in a sample of drug-free NC patients under controlled conditions. Ten adult NC patients with low cerebrospinal fluid (CSF) hypocretin levels (9 men; age: 38?±?12 yrs) were compared with 10 healthy control subjects (7 men; age: 44.9?±?12 yrs). BcT and sleep-wake cycle were continuously monitored for 44?h from 12:00?h. During the study, subjects were allowed to sleep ad libitum, living in a temperature- and humidity-controlled room, lying in bed except when eating, in a light-dark schedule (dark [D] period: 23:00–07:00?h). Sleep structure was analyzed over the 24-h period, the light (L) and the D periods. The wake-sleep cycle fragmentation was determined by calculating the frame-shift index (number of 30-s sleep stage shifts occurring every 15?min) throughout the 44-h study. The analysis of BcT circadian rhythmicity was performed according to the single cosinor method. The time-course changes in BcT and in frame-shift index were compared between narcoleptics and controls by testing the time?×?group (controls versus NC subjects) interaction effect. The state-dependent analysis of BcT during D was performed by fitting a mixed model where the factors were wake-sleep phases (wake, NREM stages 1 and 2, slow-wave sleep, and REM sleep) and group. The results showed that NC patients slept significantly more than controls during the 24?h due to a higher representation of any sleep stage (p?<?.001) during L, whereas the total amount of night sleep and its architecture were comparable in the two groups. Wake-sleep fragmentation was higher (p?<?.001) in NC subjects especially during L. Despite these differences, mesor (24-h mean), amplitude, and acrophase (peak time) of BcT circadian rhythm were comparable in narcoleptics and controls, and no between-group differences were detected in the time-course changes and in the state-dependent modulation at night of BcT. These data indicate that the hypocretin deficit in drug-free NC patients and their altered wake-sleep cycle couple with an intact modulation of BcT. (Author correspondence: )  相似文献   

16.
Brain stem transection studies suggest that pontine neurons play a key role in regulating the mammalian sleep cycle. The serotonin (5-HT) hypothesis originally postulated that pontine 5-HT containing neurons directly initiated and maintained synchronized or NREM sleep and "primed" rapid eye movement (REM) sleep. Contrary to the predictions of this hypothesis, single unit recordings from the serotonergic dorsal raphe nucleus (DRN) have uniformly shown that DRN discharge rate is positively correlated with behavioral arousal but negatively correlated with both the NREM and REM phases of sleep. These findings required revision of the original 5-HT hypothesis and suggested instead that DRN discharge may influence the maintenance of behavioral arousal and, by ceasing to discharge, may contribute to the generation of NREM and REM sleep. The purpose of this paper was to quantitatively assess the strength of the correlation between DRN discharge, REM sleep, and PGO waves following the experimental perturbations of the sleep cycle. Since forced locomotor activity is known to powerfully alter the timing of sleep and wakefulness, the present experiments used forced activity in an attempt to dissociate DRN discharge from the sleep cycle. It was hypothesized that such dissociations would suggest DRN discharge is not involved in sleep cycle regulation. Contrastingly, preserved correlations would support the hypothesis of a possible causal relationship between DRN discharge, PGO waves activity, and the timing of sleep and wakefulness. Extracellular recordings were obtained from single cells in the DRN of intact, undrugged cats across greater than 300 sleep cycles with durations ranging from about 8 to 80 mins. Forced activity significantly reduced the amount of time spent in wakefulness and increased the number but not the duration of REM sleep epochs. The results revealed that DRN discharge rate was altered as a function of sleep cycle duration. In no case, however, was forced activity able to completely dissociate the characteristic DRN discharge rates from PGO waves or the ultradian sleep cycle. The inability of forced activity to disrupt the faithful relationships between DRN discharge, PGO waves, and sleep cycle phase thus provides a new form of correlative evidence consistent with the hypothesis that the DRN is involved in sleep cycle regulation.  相似文献   

17.

Background

A new question on insufficient rest/sleep was included in the 2008 Behavioral Risk Factor Surveillance System (BRFSS) for the 50 states, District of Columbia, and three US territories. No previous study, however, has examined perceived insufficient rest/sleep in relation to cardiovascular disease (CVD) or diabetes mellitus. We examined the association between self-reported insufficient rest/sleep and CVD, diabetes, and obesity in a contemporary sample of US adults.

Methods

Multiethnic, nationally representative, cross-sectional survey (2008 BRFSS) participants were >20 years of age (n = 372, 144, 50% women). Self-reported insufficient rest/sleep in the previous month was categorized into four groups: zero, 1–13, 14–29, and 30 days. There were five outcomes: 1) any CVD, 2) coronary heart disease (CHD), 3) stroke, 4) diabetes mellitus, and 5) obesity (body mass index≥30 kg/m2). We employed multivariable logistic regression to calculate odds ratio (OR), (95% confidence interval (CI), of increasing categories of insufficient rest/sleep, taking zero days of insufficient rest/sleep as the referent category.

Principal Findings

Insufficient rest/sleep was found to be associated with 1) any CVD, 2) CHD, 3) stroke, 4) diabetes mellitus, and 5) obesity, in separate analyses. Compared to those reporting zero days of insufficient sleep (referent), the OR (95% CI) associated with all 30 days of insufficient sleep was 1.67 (1.55–1.79) for any cardiovascular disease, 1.69(1.56–1.83) for CHD, 1.51(1.36–1.68) for stroke, 1.31(1.21–1.41) for diabetes, and 1.51 (1.43–1.59) for obesity.

Conclusions

In a multiethnic sample of US adults, perceived insufficient rest/sleep was found to be independently associated with CHD, stroke, diabetes mellitus and obesity.  相似文献   

18.
Phylogenetic analysis of the ecology and evolution of mammalian sleep   总被引:1,自引:0,他引:1  
The amount of time asleep varies greatly in mammals, from 3 h in the donkey to 20 h in the armadillo. Previous comparative studies have suggested several functional explanations for interspecific variation in both the total time spent asleep and in rapid-eye movement (REM) or "quiet" (non-REM) sleep. In support of specific functional benefits of sleep, these studies reported correlations between time in specific sleep states (NREM or REM) and brain size, metabolic rate, and developmental variables. Here we show that estimates of sleep duration are significantly influenced by the laboratory conditions under which data are collected and that, when analyses are limited to data collected under more standardized procedures, traditional functional explanations for interspecific variation in sleep durations are no longer supported. Specifically, we find that basal metabolic rate correlates negatively rather than positively with sleep quotas, and that neither adult nor neonatal brain mass correlates positively with REM or NREM sleep times. These results contradict hypotheses that invoke energy conservation, cognition, and development as drivers of sleep variation. Instead, the negative correlations of both sleep states with basal metabolic rate and diet are consistent with trade-offs between sleep and foraging time. In terms of predation risk, both REM and NREM sleep quotas are reduced when animals sleep in more exposed sites, whereas species that sleep socially sleep less. Together with the fact that REM and NREM sleep quotas correlate strongly with each other, these results suggest that variation in sleep primarily reflects ecological constraints acting on total sleep time, rather than the independent responses of each sleep state to specific selection pressures. We propose that, within this ecological framework, interspecific variation in sleep duration might be compensated by variation in the physiological intensity of sleep.  相似文献   

19.
Four individuals of the lizard Ctenosaura pectinata were chronically implanted for electroencephalographic (EEG), electromyographic (EMG) and electro-oculographic (EOG) recordings. Four different vigilance states were observed throughout the nyctohemeral cycle. These states were: Active wakefulness (Aw), quiet wakefulness (Qw), quiet sleep (Qs) and active sleep (As). Each state displayed its own behavioral and electrophysiological characteristics. EEG waves were similar during Aw and Qw but they diminished in amplitude and frequency when passing from these states to Qs, and both parameters increased during As. Muscular activity was intense in Aw, it decreased during Qw and almost disappeared during Qs. This activity reappeared in a phasic way during As, coinciding with generalized motor manifestations. Ocular activity was intense during Aw but minimal during Qw, it disappeared in Qs and was present intermittently in As. Aw, Qw, Qs and As occupied 5.9%, 25.7%, 67.7% and 0.6% of the 24 hr period, respectively. The frequency and duration of As episodes showed great inter-animal variability and the mean duration was of 12.9 sec. Stimuli reaction threshold was highest during sleep. In conclusion, the lizard Ctenosaura pectinata exhibit two sleep phases (Qs and As) that may be assimilated to slow wave sleep (SWS) and paradoxical sleep (PS) of birds and mammals.  相似文献   

20.
The effects of sleep state and postnatal maturation on steady-state CO2 sensitivity, "inspiratory drive" (VT/TI), and the inspiratory "duty cycle" (TI/Ttot) were examined in nine unanesthetized premature Macaca nemestrina in the first 3 wk of life. Minute volume (VE) in room air was less in NREM sleep than in the awake state but there were no differences in VE, VT/TI, or TI/Ttot between REM and NREM sleep. VE and VT/TI corrected for body weight increased in REM and NREM sleep with postnatal maturation whereas TI/Ttot did not vary. Concomitant with this increase in room air VE and VT/TI, an increase in CO2 sensitivity (delta V/delta Paco2) with postnatal maturation was documented in NREM sleep. CO2 sensitivity was similar between REM and NREM states at each postnatal age. The increase in VE following inhalation of 2-5% CO2 was mediated by an increase in VT/TI, whereas TI/Ttot remained constant. The differences in the effect of sleep on CO2 sensitivity between neonates and adults are discussed and possible mechanisms for the observed developmental increase in CO2 sensitivity are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号