首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ryabov  V. A.  Polyakov  M. A.  Bibikov  N. G. 《Biophysics》2011,56(3):529-534
The characteristics of absolute auditory sensitivity of the bottlenose dolphin (Tursiops truncatus) in the transverse plane have been measured using short broadband stimuli simulating dolphin clicks (with energy maximum at frequencies 8, 16, 30, 50 and 100 kHz). Experiments were performed using the method of conditioned reflexes with food reinforcement. It is shown that, in the frequency range of 8–30 kHz, the absolute sensitivity of dolphin hearing in any ventral and lateral directions of the transverse plane is only 2–8 dB worse than in the rostral direction. Moreover, it is 25–30 dB better than at 50–100 kHz. At 8–30 kHz, pronounced dorsoventral asymmetry has been observed. In this frequency range, it reaches 15–18 dB whereas at 50–100 kHz this asymmetry decreases to 2–3 dB. In the dorsal direction, the auditory sensitivity is 18 dB worse than in the rostral one at ∼8 kHz, and the difference rises smoothly to 33 dB at ∼100 kHz. At 50–100 kHz, the acoustical thresholds in the transverse plane relative to those for the with rostral direction get worse almost uniformly in all directions by 25–33 dB. As a result, in the transverse plane the beam patterns are nearly circular, unlike those at 8–30 kHz. The results are discussed in terms of the model of sound perception through the left and right mental foramens. The biological relevance of such asymmetry is emphasized.  相似文献   

2.
Absolute hearing thresholds in the spear-nosed bat Phyllostomus discolor have been determined both with psychophysical and neurophysiological methods. Neurophysiological data have been obtained from two different structures of the ascending auditory pathway, the inferior colliculus and the auditory cortex. Minimum auditory thresholds of neurons are very similar in both structures. Lowest absolute thresholds of 0 dB SPL are reached at frequencies from about 35 to 55 kHz in both cases. Overall behavioural sensitivity is roughly 20 dB better than neural sensitivity. The behavioural audiogram shows a first threshold dip around 23 kHz but threshold was lowest at 80 kHz (−10 dB SPL). This high sensitivity at 80 kHz is not reflected in the neural data. The data suggest that P. discolor has considerably better absolute auditory thresholds than estimated previously. The psychophysical and neurophysiological data are compared to other phyllostomid bats and differences are discussed. S. Hoffmann, L. Baier, F. Borina contributed equally to this work.  相似文献   

3.
The time course of recovery from temporary threshold shift (TTS) was measured in a bottlenose dolphin, Tursiops truncatus , using an evoked-potential procedure. The envelope-following response (EFR), which is a rhythmic train of auditory brainstem responses (ABR) to sinusoidally amplitude-modulated tones, was used as an indicator of the sound reception by the animal. Variation of the intensity of the stimulus allowed us to measure the animal's hearing via EFR thresholds. During each session, following an initial measure of threshold, the trained animal voluntary positioned itself within a hoop 1 m underwater while a 160 dB re 1 μPa noise of a 4–11 kHz bandwidth was presented for 30 min. After the noise exposure, thresholds were measured again at delays of 5, 10, 15, 25, 45, and 105 min. Measurements were made at test frequencies of 8, 11.2, 16, 22.5, and 32 kHz. The maximum TTS occurred 5 min after exposure and rapidly recovered with a rate of around 1.5 dB per doubling of time. TTS occurred at test frequencies from 8 to 16 kHz, with the maximum at 16 kHz. TTS was negligible at 22.5 kHz and absent at 32 kHz.  相似文献   

4.
1. The neural audiogram of the common long-eared bat, Plecotus auritus was recorded from the inferior colliculus (IC). The most sensitive best frequency (BF) thresholds for single neurones are below 0 dB SPL between 7-20 kHz, reaching a best value of -20 dB SPL between 12-20 kHz. The lower and upper limits of hearing occur at 3 kHz and 63 kHz, respectively, based on BF thresholds at 80 dB SPL. BF threshold sensitivities are about 10 dB SPL between 25-50 kHz, corresponding to the energy band of the sonar pulse (26-78 kHz). The tonotopic organization of the central nucleus of the IC (ICC) reveals that neurones with BFs below 20 kHz are disproportionately represented, occupying about 30% of ICC volume, occurring in the more rostral and lateral regions of the nucleus. 2. The acoustical gain of the external ear reaches a peak of about 20 dB between 8-20 kHz. The gain of the pinna increases rapidly above 4 kHz, to a peak of about 15 dB at 7-12 kHz. The pinna gain curve is similar to that of a simple, finite length acoustic horn; expected horn gain is calculated from the average dimensions of the pinna. 3. The directional properties of the external ear are based on sound diffraction by the pinna mouth, which, to a first approximation, is equivalent to an elliptical opening due to the elongated shape of the pinna. The spatial receptive field properties for IC neurones are related to the directional properties of the pinna. The position of the acoustic axis of the pinna and the best position (BP) of spatial receptive fields are both about 25 degrees from the midline between 8-30 kHz but approach the midline to 8 degrees at 45 kHz. In elevation, the acoustic axis and the BP of receptive fields move upwards by 20 degrees between 9-25 kHz, remaining stationary for frequencies up to 60 kHz. 4. The extremely high auditory sensitivity shown by the audiogram and the directionality of hearing are discussed in terms of the adaptation of the auditory system to low frequencies and the role of a large pinna in P. auritus. The functional significance of low frequency hearing in P. auritus is discussed in relation to hunting for prey by listening and is compared to other gleaning species.  相似文献   

5.
It is not known to what extent the entire saccule contributes to overall hearing sensitivity in any fish species. Here we report directional and frequency sensitivity in a teleost fish (Dormitator latifrons) and effects of unilateral and bilateral removal of saccular otoliths on its hearing sensitivity. The fish had different hearing thresholds in the horizontal (-54.4 to -50.3 dB re: 1 micro m) and mid-sagittal (-58.6 to -53.1 dB) planes. At 100 Hz, unilateral otolith removal did not significantly change hearing sensitivity in the mid-sagittal plane, but caused selective reductions of auditory sensitivity by 3-7 dB in the azimuthal axes that are consistent with the longitudinal axis of the damaged saccule. Along the fish's longitudinal axis, unilateral otolith removal significantly decreased auditory sensitivity at 50 Hz and 400 Hz, but not at 100 Hz, 200 Hz, and 345 Hz. At 100 Hz, bilateral otolith removal resulted in robust hearing loss of 27-35 dB at different axes in both horizontal and mid-sagittal planes. Along the fish's longitudinal axis, the bilateral removal reduced auditory sensitivity by 13-27 dB at the different frequencies. Therefore, these results demonstrate that the saccule plays important roles in directional hearing and frequency responses.  相似文献   

6.
The anabantoid fish Trichopsis vittata starts vocalizing as 8-week-old juveniles. In order to determine whether juveniles are able to detect conspecific sounds, hearing sensitivities were measured in six size groups utilizing the auditory brainstem response-recording technique. Results were compared to sound pressure levels and spectra of sounds recorded during fighting. Auditory evoked potentials were present in all size groups and complete audiograms were obtained starting with 0.18 to 0.30 g juveniles. Auditory sensitivity during development primarily increased between 0.8 kHz and 3.0 kHz. The most sensitive frequency within this range shifted from 2.5 kHz to 1.5 kHz, whereas thresholds decreased by 14 dB. Sound production, on the other hand, started at 0.1 g and sound power spectra at dominant frequencies increased by 43 dB, while dominant frequencies shifted from 3 kHz to 1.5 kHz. Comparisons between audiograms and sound power spectra in similar-sized juveniles revealed no clear match between most sensitive frequencies and dominant frequencies of sounds. This also revealed that juveniles cannot detect conspecific sounds below the 0.31 to 0.65 g size class. These results indicate that auditory sensitivity develops prior to the ability to vocalize and that vocalization occurs prior to the ability to communicate acoustically.  相似文献   

7.
Underwater differential frequency hearing thresholds in the Black Sea bottle-nosed dolphin (Tursiops truncatus p.) and the northern fur seal (Callorhinus ursinus) were measured depending on signal frequency and sound conduction pathways. The measurements were performed by the method of instrumental conditioned reflexes with food reinforcement under conditions of full and partial (with heads out of water at sound conduction through body tissues) submergence of animals into water. It was shown that in a frequency range of 5-100 kHz, underwater differential frequency hearing thresholds of the bottle-nosed dolphin changed from 0.46-0.60% to 0.21-0.34% and depended little on sound conduction pathways. The minimum underwater differential frequency hearing thresholds of the northern fur seal corresponded to the frequencies of maximum hearing sensitivity, changed from 1.7% to 1-2.3% in a frequency range of 1-20 kHz, sharply increased at the edges of the frequency hearing perception range, and depended little (in a range of 5-40 kHz) on sound conduction pathways. Thus, underwater sounds propagating through the body tissues of dolphin and fur seal reach the inner ear.  相似文献   

8.
Absolute thresholds and critical masking ratios were determined behaviorally for the European barn owl (Tyto alba guttata). It shows an excellent sensitivity throughout its hearing range with a minimum threshold of −14.2 dB sound pressure level at 6.3 kHz, which is similar to the sensitivity found in the American barn owl (Tyto alba pratincola) and some other owls. Both the European and the American barn owl have a high upper-frequency limit of hearing exceeding that in other bird species. Critical masking ratios, that can provide an estimate for the frequency selectivity in the barn owl's hearing system, were determined with a noise of about 0 dB spectrum level. They increased from 19.1 dB at 2 kHz to 29.2 dB at 8 kHz at a rate of 5.1 dB per octave. The corresponding critical ratio bandwidths were 81, 218, 562 and 831 Hz for test-tone frequencies of 2, 4, 6.3 and 8 kHz, respectively. These values indicate, contrary to expectations based on the spatial representation of frequencies on the basilar papilla, increasing bandwidths of auditory filters in the region of the barn owl's auditory fovea. This increase, however, correlates with the increase in the bandwidths of tuning curves in the barn owl's auditory fovea. Accepted: 27 November 1997  相似文献   

9.
1. Sound localization was measured behaviourally for the Atlantic bottlenose porpoise (Tursiops truncatus) using a wide range of pure tone pulses as well as clicks simulating the species echolocation click. 2. Measurements of the minimum audible angle (MAA) on the horizontal plane give localization discrimination thresholds of between 2 and 3 degrees for sounds from 20 to 90 kHz and thresholds from 2-8 to 4 degrees at 6, 10 and 100 kHz. With the azimuth of the animal changed relative to the speakers the MAAs were 1-3-1-5 degrees at an azimuth of 15 degrees and about 5 degrees for an azimuth of 30 degrees. 3. MAAs to clicks were 0-7-0-8 degrees. 4. The animal was able to do almost as well in determining the position of vertical sound sources as it could for horizontal localization. 5. The data indicate that at low frequencies the animal may have been localizing by using the region around the external auditory meatus as a detector, but at frequencies about 20 kHz it is likely that the animal was detecting sounds through the lateral sides of the lower jaw. 6. Above 20 kHz, it is likely that the animal was localizing using binaural intensity cues. 7. Our data support evidence that the lower jaw is an important channel for sound detection in Tursiops.  相似文献   

10.
Behavioral auditory thresholds of Phyllostomus discolor are characterized by two threshold minima separated by an insensitive region at about 55 kHz (Esser and Daucher 1996). To investigate whether these characteristics are due to cochlear properties, we recorded distortion product otoacoustic emissions (DPOAEs) and calculated relative DPOAE threshold curves, which proved to be a good measure of cochlear sensitivity. Our results indicate that in P. discolor, cochlear sensitivity, as assessed by DPOAE recordings, does not show a threshold maximum at 55 kHz. The DPOAE threshold curves display an absolute minimum at approximately 30 kHz, and from that frequency region, the threshold continuously increases without any pronounced irregularities. The frequency tuning properties of the cochlea, as assessed by DPOAE suppression tuning curves (STCs) reveal broad filter bandwidths with Q10dB values between 3.4 and 10.7. There are no frequency-specific specializations of cochlear tuning. The characteristic pattern of subsequent threshold maxima and minima at high frequencies observed in behavioral studies seems to be shaped by transfer characteristics of the outer ear and/or neuronal processing in the ascending auditory pathway rather than by cochlear mechanics.  相似文献   

11.
In this study we examine the auditory capabilities of the sea otter (Enhydra lutris), an amphibious marine mammal that remains virtually unstudied with respect to its sensory biology. We trained an adult male sea otter to perform a psychophysical task in an acoustic chamber and at an underwater apparatus. Aerial and underwater audiograms were constructed from detection thresholds for narrowband signals measured in quiet conditions at frequencies from 0.125–40 kHz. Aerial hearing thresholds were also measured in the presence of octave-band masking noise centered at eight signal frequencies (0.25–22.6 kHz) so that critical ratios could be determined. The aerial audiogram of the sea otter resembled that of sea lions and showed a reduction in low-frequency sensitivity relative to terrestrial mustelids. Best sensitivity was ?1 dB re 20 µPa at 8 kHz. Under water, hearing sensitivity was significantly reduced when compared to sea lions and other pinniped species, demonstrating that sea otter hearing is primarily adapted to receive airborne sounds. Critical ratios were more than 10 dB higher than those measured for pinnipeds, suggesting that sea otters are less efficient than other marine carnivores at extracting acoustic signals from background noise, especially at frequencies below 2 kHz.  相似文献   

12.
应用微电极技术测定了45只大鼠325根单一听神经纤维的特征频率及其阈值和调谐曲线。测得特征频率的最低值为0.58kHz,最高值为62.6kHz。敏感度最高的频带在20~50kHz,敏感度最高的阈值为6dB(SPL),其相应的频率为27.49kHz。由最低阈值连线延续到边侧的调谐曲线,便形成了大鼠整个的听反应阈曲线。该听反应阈曲线与行为测听所观察到的听力曲线近似。  相似文献   

13.
1. The maximum acoustic gain of the external ear in Macroderma gigas was found to be 25-30 dB between 5-8 kHz and in Nyctophilus gouldi it reached 15-23 dB between 7-22 kHz. Pinna gain reached a peak of 16 dB near 4.5-6 kHz in M. gigas and 12-17 dB between 7-12 kHz in N. gouldi, with average gain of 6-10 dB up to 100 kHz. Pinna gain curves resemble that of a finite conical horn, including resonance. 2. The directional properties of the external ear in both species result from sound diffraction at the pinna face, as it approximates a circular aperture. The frequency dependent movement of the acoustic axis in azimuth and elevation is attributed to the asymmetrical structure of the pinnae. 3. Evoked potentials and neuronal responses were studied in the inferior colliculus. In M. gigas, the neural audiogram has sensitivity peaks at 10-20 kHz and 35-43 kHz, with extremely low thresholds (-18 dB SPL) in the low frequency region. In N. gouldi, the neural audiogram has sensitivity peaks at 8-14 kHz (lowest threshold 5 dB SPL) and 22-45 kHz. Removal of the contralateral pinna causes a frequency dependent loss in neural threshold sensitivity of up to 10-15 dB in both species. 4. The high frequency peak in the audiogram coincides with the sonar energy band in both species, whereas the low frequency region is used for social communication. Highly sensitive low frequency hearing is discussed in relation to hunting in bats by passive listening.  相似文献   

14.
We investigated the relationship between auditory sensitivity, frequency selectivity, and the vocal repertoire of greater spear-nosed bats (Phyllostomus hastatus). P. hastatus commonly emit three types of vocalizations: group-specific foraging calls that range from 6 to 11 kHz, low amplitude echolocation calls that sweep from 80 to 40 kHz, and infant isolation calls from 15 to 100 kHz. To determine if hearing in P. hastatus is differentially sensitive or selective to frequencies in these calls, we determined absolute thresholds and masked thresholds using an operant conditioning procedure. Both absolute and masked thresholds were lowest at 15 kHz, which corresponds with the peak energy of isolation calls. Auditory and masked thresholds were higher at sound frequencies used for group-specific foraging calls and echolocation calls. Isolation calls meet the requirements of individual signatures and facilitate parent-offspring recognition. Many bat species produce isolation calls with peak energy between 10 and 25 kHz, which corresponds with the frequency region of highest sensitivity in those species for which audiogram data are available. These findings suggest that selection for accurate offspring recognition exerts a strong influence on the sensory system of P. hastatus and likely on other species of group-living bats.  相似文献   

15.
Tone detection and temporal gap detection thresholds were determined in CBA/CaJ mice using a Go/No-go procedure and the psychophysical method of constant stimuli. In the first experiment, audiograms were constructed for five CBA/CaJ mice. Thresholds were obtained for eight pure tones ranging in frequency from 1 to 42 kHz. Audiograms showed peak sensitivity between 8 and 24 kHz, with higher thresholds at lower and higher frequencies. In the second experiment, thresholds for gap detection in broadband and narrowband noise bursts were measured at several sensation levels. For broadband noise, gap thresholds were between 1 and 2 ms, except at very low sensation levels, where thresholds increased significantly. Gap thresholds also increased significantly for low pass-filtered noise bursts with a cutoff frequency below 18 kHz. Our experiments revised absolute auditory thresholds in the CBA/CaJ mouse strain and demonstrated excellent gap detection ability in the mouse. These results add to the baseline behavioral data from normal-hearing mice which have become increasingly important for assessing auditory abilities in genetically altered mice.  相似文献   

16.
Summary The tonotopic organization of the inferior colliculus (IC) in two echolocating bats,Hipposideros speoris andMegaderma lyra, was studied by multiunit recordings.InHipposideros speoris frequencies below the range of the echolocation signals (i.e. below 120 kHz) are compressed into a dorsolateral cap about 400–600 m thick. Within this region, neuronal sheets of about 4–5 m thickness represent a 1 kHz-band.In contrast, the frequencies of the echolocation signals (120–140 kHz) are overrepresented and occupy the central and ventral parts of the IC (Fig. 3). In this region, neuronal sheets of about 80 m thickness represent a 1 kHz-band. The largest 1 kHz-slabs (400–600 m) represent frequencies of the pure tone components of the echolocation signals (130–140 kHz).The frequency of the pure tone echolocation component is specific for any given individual and always part of the overrepresented frequency range but did not necessarily coincide with the BF of the thickest isofrequency slab. Thus hipposiderid bats have an auditory fovea (Fig. 10).In the IC ofMegaderma lyra the complete range of audible frequencies, from a few kHz to 110 kHz, is represented in fairly equal proportions (Fig. 7). On the average, a neuronal sheet of 30 m thickness is dedicated to a 1 kHz-band, however, frequencies below 20 kHz, i.e. below the range of the echolocation signals, are overrepresented.Audiograms based on thresholds determined from multiunit recordings demonstrate the specific sensitivities of the two bat species. InHipposideros speoris the audiogram shows two sensitivity peaks, one in the nonecholocating frequency range (10–60 kHz) and one within the auditory fovea for echolocation (130–140 kHz).Megaderma lyra has extreme sensitivity between 15–20 kHz, with thresholds as low as –24 dB SPL, and a second sensitivity peak at 50 kHz (Fig. 8).InMegaderma lyra, as in common laboratory mammals, Q10dB-values of single units do not exceed 30, whereas inHipposideros speoris units with BFs within the auditory fovea reach Q10dB-values of up to 130.InMegaderma lyra, many single units and multiunit clusters with BFs below 30 kHz show upper thresholds of 40–50 dB SPL and respond most vigorously to sound intensities below 30 dB SPL (Fig. 9). Many of these units respond preferentially or exclusively to noise. These features are interpreted as adaptations to detection of prey-generated noises.The two different tonotopic arrangements (compare Figs. 3 and 7) in the ICs of the two species are correlated with their different foraging behaviours. It is suggested that pure tone echolocation and auditory foveae are primarily adaptations to echo clutter rejection for species foraging on the wing close to vegetation.Abbreviations BF Best frequency - CF constant frequency - FM frequency modulated - IC inferior colliculus - HS Hipposideros speoris  相似文献   

17.
Summary Evoked potential (EP) recordings in the auditory cortex of the porpoise,Phocoena phocoena, were used to obtain data characterizing the auditory perception of this dolphin. The frequency threshold curves showed that the lowest EP thresholds were within 120–130 kHz. An additional sensitivity peak was observed between 20 and 30 kHz. The minimal EP threshold to noise burst was 3·10–4–10/s-3 Pa. The threshold for response to modulations in sound intensity was below 0.5 dB and about 0.1% for frequency modulations. Special attention was paid to the dependence of the auditory cortex EP on the temporal parameters of the acoustic stimuli: sound burst duration, rise time, and repetition rate. The data indicate that the porpoise auditory cortex is adapted to detect ultrasonic, brief, fast rising, and closely spaced sounds like echolocating clicks.Abbreviation EP evoked potential  相似文献   

18.
Thresholds for evoked vocal responses and thresholds of multiunit midbrain auditory responses to pure tones and synthetic calls were investigated in males of Pleurodema thaul, as behavioral thresholds well above auditory sensitivity have been reported for other anurans. Thresholds for evoked vocal responses to synthetic advertisement calls played back at increasing intensity averaged 43 dB RMS SPL (range 31–52 dB RMS SPL), measured at the subjects’ position. Number of pulses increased with stimulus intensities, reaching a plateau at about 18–39 dB above threshold and decreased at higher intensities. Latency to call followed inverse trends relative to number of pulses. Neural audiograms yielded an average best threshold in the high frequency range of 46.6 dB RMS SPL (range 41–51 dB RMS SPL) and a center frequency of 1.9 kHz (range 1.7–2.6 kHz). Auditory thresholds for a synthetic call having a carrier frequency of 2.1 kHz averaged 44 dB RMS SPL (range 39–47 dB RMS SPL). The similarity between thresholds for advertisement calling and auditory thresholds for the advertisement call indicates that male P. thaul use the full extent of their auditory sensitivity in acoustic interactions, likely an evolutionary adaptation allowing chorusing activity in low-density aggregations.  相似文献   

19.
Envelope following responses were measured in two bottlenose dolphins in response to sinusoidal amplitude modulated tones with carrier frequencies from 20 to 60 kHz and modulation rates from 100 to 5,000 Hz. One subject had elevated hearing thresholds at higher frequencies, with threshold differences between subjects varying from ±4 dB at 20 and 30 kHz to +40 dB at 50 and 60 kHz. At each carrier frequency, evoked response amplitudes and phase angles were plotted with respect to modulation frequency to construct modulation rate transfer functions. Results showed that both subjects could follow the stimulus envelope components up to at least 2,000 Hz, regardless of carrier frequency. There were no substantial differences in modulation rate transfer functions for the two subjects suggesting that reductions in hearing sensitivity did not result in reduced temporal processing ability. In contrast to earlier studies, phase data showed group delays of approximately 3.5 ms across the tested frequency range, implying generation site(s) within the brainstem rather than the periphery at modulation rates from 100 to 1,600 Hz. This discrepancy is believed to be the result of undersampling of the modulation rate during previous phase measurements.  相似文献   

20.
Aminoglycoside antibiotics produce varying degrees of ototoxicity, dependent on dosage time, in animals synchronized for rhythm study. Herein, we illustrate the use of an economical and reliable system to telemeter body temperature of laboratory animals as an endogenous marker rhythm for gentamicin-induced ototoxicity. Two groups of 3 male Sprague-Dawley rats (250-400 gm) were housed in separate cages in a temperature-controlled room programmed with a 12:12 LD schedule and monitored for hearing thresholds at the frequencies of 8kHz, 16 kHz, 24 kHz and 32 kHz at 2-week intervals. Each rat was dosed with 100 mg/kg/day gentamicin subcutaneously for a duration of 28 days. The animals from one group were dosed at their daily temperature maximum, while the animals of the other group were dosed at their daily temperature minimum. Both after 14 and 28 days of gentamicin treatment there was no important changes in auditory thresholds from baseline values when treatment was timed daily to the circadian peak of body temperature. Animals dosed daily at the trough of the circadian temperature rhythm evidenced an auditory threshold shift of between 5 and 25 dB after 14 days of treatment and a total hearing loss (80-90 dB) after 28 days of such treatment. These results document a dramatically greater level of hearing loss induced in those animals dosed with gentamicin at the body temperature trough (diurnal rest span) as compared to those dosed at the acrophase (nocturnal activity span). The findings indicate that the peak and trough of the circadian pattern of body temperature serve as meaningful markers of the resistance and susceptibility, respectively, of gentamicin-induced ototoxicity in rodent models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号