首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The location of the Drosophila orena chromocenter in polytene chromosomes of pseudonurse cells of the D. melanogaster ovaries (the otu11 mutation) and salivary glands has been studied. Numerous sites of location of the D. orena chromocenter DNA have been found throughout the length of D. melanogaster chromosomes. The specific distribution of the binding sites for the DNA probe has made it possible to identify chromosomes and analyze their mutual positions in the three-dimensional space of the nuclei of pseudonurse cells. The mutual positions of chromosomes have been found to vary, the pericentromeric regions of different chromosomes differing from one another in associative ratios.  相似文献   

2.
Distribution of the retrotransposable element 412 in Drosophila species   总被引:1,自引:1,他引:0  
Copy numbers of sequences homologous to the Drosophila melanogaster retrotransposable element 412, their distribution between the chromosome arms and the chromocenter, and whether they contain full- size copies were analyzed for 55 species of the Drosophila genus. Element 412 insertion sites were detected on the chromosome arms of D. melanogaster, Drosophila simulans, and a few species of the obscura group, but the chromocenter was labeled in almost all species. The presence of element 412 sequences in the majority of species shows that this element has a long evolutionary history in Drosophilidae, although it may have recently invaded the chromosomes in some species, such as D. simulans. Differences in copy number between species may be due to population size or specific endogenous or environmental factors and may follow the worldwide invasion of the species. Putative full-length copies were detected in the chromocenters of some species with no copies on the chromosome arms, suggesting that the chromocenter may be a shelter for such copies and not only for deleted ones.   相似文献   

3.
L. Sanchez  P. Santamaria 《Genetics》1997,147(1):231-242
This article reports the breaking of ethological barriers through the constitution of soma-germ line chimeras between species of the melanogaster subgroup of Drosophila, which are ethologically isolated. Female Drosophila yakuba and D. teissieri germ cells in a D. melanogaster ovary produced functional oocytes that, when fertilized by D. melanogaster sperm, gave rise to sterile yakuba-melanogaster and teissieri-melanogaster male and female hybrids. However, the erecta-melanogaster and orena-melanogaster hybrids were lethal, since female D. erecta and D. orena germ cells in a D. melanogaster ovary failed to form oocytes with the capacity to develop normally. This failure appears to be caused by an altered interaction between the melanogaster soma and the erecta and orena germ lines. Germ cells of D. teissieri and D. orena in a D. melanogaster testis produced motile sperm that was not stored in D. melanogaster females. This might be due to incompatibility between the teissieri and orena sperm and the melanogaster seminal fluid. A morphological analysis of the terminalia of yakuba-melanogaster and teissieri-melanogaster hybrids was performed. The effect on the terminalia of teissieri-melanogaster hybrids of a mutation in doublesex, a regulatory gene that controls the development of the terminalia, was also investigated.  相似文献   

4.
P. Zhang  A. C. Spradling 《Genetics》1995,139(2):659-670
Peri-centromeric regions of Drosophila melanogaster chromosomes appear heterochromatic in mitotic cells and become greatly underrepresented in giant polytene chromosomes, where they aggregate into a central mass called the chromocenter. We used P elements inserted at sites dispersed throughout much of the mitotic heterochromatin to analyze the fate of 31 individual sites during polytenization. Analysis of DNA sequences flanking many of these elements revealed that middle repetitive or unique sequence DNAs frequently are interspersed with satellite DNAs in mitotic heterochromatin. All nine Y chromosome sites tested were underrepresented >20-fold on Southern blots of polytene DNA and were rarely or never detected by in situ hybridization to salivary gland chromosomes. In contrast, nine tested insertions in autosomal centromeric heterochromatin were represented fully in salivary gland DNA, despite the fact that at least six were located proximal to known blocks of satellite DNA. The inserted sequences formed diverse, site-specific morphologies in the chromocenter of salivary gland chromosomes, suggesting that domains dispersed at multiple sites in the centromeric heterochromatin of mitotic chromosomes contribute to polytene β-heterochromatin. We suggest that regions containing heterochromatic genes are organized into dispersed chromatin configurations that are important for their function in vivo.  相似文献   

5.
Twenty-four biotin-labeled recombinant-DNA probes which contained putative unique-sequence Drosophila melanogaster DNA were hybridized to larval salivary-gland chromosomes of D. melanogaster and Drosophila virilis. All probes hybridized to D. melanogaster chromosomes at the expected sites. However, one probe hybridized to at least 16 additional sites, and one hybridized to one additional site. Thirteen probes hybridized strongly to D. virilis chromosomes, four hybridized weakly and infrequently, and seven did not hybridize. Probes representing two multigene families (beta-tubulin and yolk-protein) hybridized as would be expected if all sites had been conserved in the two species on the same chromosomal elements. The multiple hybridization sites of a third probe which may represent a multigene family were also conserved. The results were consistent with H.J. Muller's proposal that chromosomal elements have been conserved during evolution of this genus.  相似文献   

6.
A mobile dispersed genetic element, mdg4 , approximately 7.5 kilobases (kb) long has been cloned from D. melanogaster genome. Chromosomal bands have only few sites of mdg4 , but it always hybridizes to the chromocenter. The location of mdg4 varies among D. melanogaster strains. Blot hybridization shows that, in contrast to other mdg elements, mdg4 sequences are rather heterogeneous. Only few copies are full-length. A strong amplification of mdg4 has occurred during the in vitro cultivation of cells involving only one mdg4 variant. Long terminal repeats (LTRs) and flanking sequences have been sequenced in two cloned copies of transposable element mdg4 . In both cloned copies of mdg4 , LTRs have an identical nucleotide sequence 479 bp long. The mdg4 is flanked by four-base-pair direct repeats, short mismatched palindromes being present at the ends of each LTR. The termini of the mdg4 body contain an oligopurine stretch and a region partially complementary to D. melanogaster tRNA-Lys. Thus, structural organization of mdg4 LTRs is similar to that of several other mdg elements and retroviral proviruses.  相似文献   

7.
8.
A partial genomic library from the Batumi L stock of Drosophila melanogaster was constructed using yeast artificial chromosomes as vectors. The DNA was restricted by Not1 and large fragments were inserted into the YAC5 vector. The size of cloned DNA varied from 90 to 500 kb. 48 random clones were characterized by in situ hybridization to the Batumi L polytene salivary gland chromosome. Single euchromatic sites of hybridization were detected for 27 clones; 11 clones revealed the main euchromatic hybridization site and several additional sites scattered along the chromosomes; 8 clones carried repeats which hybridized to chromocenter and other chromosomal sites; clones with 500 and 90 kb inserts originated from the Y chromosomes and nucleolus, respectively. The library is enriched by the repeated sequences related to the b-heterochromatin.  相似文献   

9.
The distribution of four retrotransposon families (MDG1, MDG3, MDG4 and copia) on polytene chromosomes of different (from 9 to 15) Drosophila simulans strains is studied. The mean number of MDG1 and copia euchromatic hybridization sites (3 sites for each element) is drastically decreased in D. simulans in comparison with D. melanogaster (24 and 18 sites respectively). The mean number of MDG3 sites of hybridization is 5 in D. simulans against 12 in D. melanogaster. As for MDG4 both species have on the average about 2-3 euchromatic sites. The majority of MDG1 and copia and about a half of MDG3 euchromatic copies are localized in restricted number of sites (hot spots) on D. simulans polytene chromosomes. In D. melanogaster these elements are scattered along the chromosomes though there are some hot spots too. It appears that euchromatic copies of MDG1 and copia are considerably less mobile in D. simulans in contrast to D. melanogaster. Some common hot spots of retrotransposon localization in D. simulans and D. melanogaster were earlier described as intercalary heterochromatin regions in D. melanogaster. The level of interstrain variability of MDG4 hybridization sites is comparable in both species. Comparative blot-analysis of adult and larval salivary gland DNA shows that MDG1 and copia are situated mainly in euchromatic regions of D. melanogaster chromosomes. In D. simulans genome they are located mainly in heterochromatic regions underreplicated in salivary gland polytene chromosomes. There are interspecies differences in the distribution of retrotransposons in beta-heterochromatic chromosome regions.  相似文献   

10.
In situ hybridization of (dC-dA)n.(dG-dT)n to the polytene chromosomes of Drosophila melanogaster reveals a clearly non-random distribution of chromosomal sites for this sequence. Sites are distributed over most euchromatic regions but the density of sites along the X chromosome is significantly higher than the density over the autosomes. All autosomes show approximately equal levels of hybridization except chromosome 4 which has no detectable stretches of (dC-dA)n.(dG-dT)n. Another striking feature is the lack of hybridization of the beta-heterochromatin of the chromocenter. The specific sites are conserved between different strains of D. melanogaster. The same overall chromosomal pattern of hybridization is seen for the other Drosophila species studied, including D. simulans, a sibling species with a much lower content of middle repetitive DNA, and D. virilis, a distantly related species. The evolutionary conservation of the distribution of (dC-dA)n.(dG-dT)n suggests that these sequences are of functional importance. The distribution patterns seen for D. pseudoobscura and D. miranda raise interesting speculations about function. In these species a chromosome equivalent to an autosomal arm of D. melanogaster has been translocated onto the X chromosome and acquired dosage compensation. In each species the new arm of the X also has a higher density of (dC-dA)n.(dG-dT)n similar to that seen on other X chromosomes. In addition to correlations with dosage compensation, the depletion of (dC-dA)n.(dG-dT)n in beta-heterochromatin and chromosome 4 may also be related to the fact that these regions do not normally undergo meiotic recombination.  相似文献   

11.
12.
13.
Using a computer-based system for model building and analysis, three-dimensional models of 24 Drosophila melanogaster salivary gland nuclei have been constructed from optically or physically sectioned glands, allowing several generalizations about chromosome folding and packaging in these nuclei. First and most surprising, the prominent coiling of the chromosomes is strongly chiral, with right-handed gyres predominating. Second, high frequency appositions between certain loci and the nuclear envelope appear almost exclusively at positions of intercalary heterochromatin; in addition, the chromocenter is always apposed to the envelope. Third, chromosomes are invariably separated into mutually exclusive spatial domains while usually extending across the nucleus in a polarized (Rabl) orientation. Fourth, the arms of each autosome are almost always juxtaposed, but no other relative arm positions are strongly favored. Finally, despite these nonrandom structural features, each chromosome is found to fold into a wide variety of different configurations. In addition, a set of nuclei has been analyzed in which the normally aggregrated centromeric regions of the chromosomes are located far apart from one another. These nuclei have the same architectural motifs seen in normal nuclei. This implies that such characteristics as separate chromosome domains and specific chromosome-nuclear envelope contacts are largely independent of the relative placement of the different chromosomes within the nucleus.  相似文献   

14.
Cloning of fragments of ribosomal genes containing insertions in the 28S RNA gene has been reported earlier. Subcloning of DNA fragments corresponding to insertion sequences and their hybridization with DNA, RNA and polytene chromosomes from different flies is described. Type 1 insertions (containing BamI sites) are highly heterogeneous in length and sequence even in homozygotes. Type 2 insertions (with EcoRI sites) are rather homogeneous. Two types of insertions are represented in the D. melanogaster genome by 50 and 30 copies, respectively. Restriction fragments with insertions significantly differ in DNA from embryos and larvae. D. simulans and D. virilis also contain the sequences of both types of insertions, though in fewer number of copies. Type 1 insertions seem to be poorly transcribed, and type 2 insertions are not transcribed at all. Among 2000 recombinant clones screened a number of DI plasmids hybridizing to isolated insertions were obtained. Six of them were mapped with restriction endonucleases and hybridized with insertion fragments. rRNA and polytene chromosomes. All of these DI plasmids hybridize with the nucleoli, one with the chromocenter and one with the 79F 3L site. In LI9, not coding for rRNA, the sequences, corresponding to two types on insertions are located only a few kilobases apart. D17a does not encode for rRNA, but hybridizes in situ only with the nucleoli.  相似文献   

15.
The distribution of cohesin complex in polytene chromosomes of Drosophila melanogaster was studied. Cohesin is a complicated protein complex which is regulated by the DRAD21 subunit. Using immunostaining for DRAD21p, the cohesins were shown to be preferentially located in the interband regions. This specificity was not characteristic for puffs, where uniform staining was observed. The presence of a few brightly fluorescent regions (five to ten per chromosome arm) enriched with cohesin complexes was shown. Some of these regions had permanent location, and the others, variable location. No antibody binding was detected in the chromocenter. Immunostaining of interphase nuclei of neuroblasts revealed large cohesin formations. On the polytene chromosomes of D. melanogaster, the Drad21 gene was mapped to the chromocentric region (81) of the L arm of chromosome 3.  相似文献   

16.
Microdissection of the chromocenter of D. virilis salivary gland polytene chromosomes has been carried out and the region-specific DNA library (DvirIII) has been obtained. FISH was used for DvirIII hybridization with salivary gland polytene chromosomes and ovarian nurse cells of D. virilis and D. kanekoi. Localization of DvirIII in the pericentromeric regions of chromosomes and in the telomeric region of chromosome 5 was observed in both species. Moreover, species specificity in the localization of DNA sequences of DvirIII in some chromosomal regions was detected. In order to study the three-dimensional organization of pericentromeric heterochromatin region of polytene chromosomes of ovarian nurse cells of D. virilis and D. kanekoi, 3S FISH DvirIII was performed with nurse cells of these species. As a result, species specificity in the distribution of DvirIII signals in the nuclear space was revealed. Namely, the signal was detected in the local chromocenter at one pole of the nucleus in D. virilis, while the signal from the telomeric region of chromosome 5 was detected on another pole. At the same time, DvirIII signals in D. kanekoi are localized in two separate areas in the nucleus: the first belongs to the pericentromeric region of chromosome 2 and another to pericentromeric regions of the remaining chromosomes.  相似文献   

17.
In the Suppressor of Underreplication( SuUR) mutant strain of Drosophila melanogaster, the heterochromatin of polytene chromosomes is not underreplicated and, as a consequence, a number of beta-heterochromatic regions acquire a banded structure. The chromocenter does not form in these polytene chromosomes, and heterochromatic regions, normally part of the chromocenter, become accessible to cytological analysis. We generated four genomic DNA libraries from specific heterochromatic regions by microdissection of polytene chromosomes. In situ hybridization of individual libraries onto SuUR polytene chromosomes shows that repetitive DNA sequences spread into the neighboring euchromatic regions. This observation allows the localization of eu-heterochromatin transition zones on polytene chromosomes. We find that genomic scaffolds from the eu-heterochromatin transition zones are enriched in repetitive DNA sequences homologous to those flanking the suppressor of forked gene [ su(f) repeat]. We isolated and sequenced about 300 clones from the heterochromatic DNA libraries obtained. Most of the clones contain repetitive DNA sequences; however, some of the clones have unique DNA sequences shared with parts of unmapped genomic scaffolds. Hybridization of these clones onto SuUR polytene chromosomes allowed us to assign the cytological localizations of the corresponding genomic scaffolds within heterochromatin. Our results demonstrate that the SuUR mutant renders possible the mapping of heterochromatic scaffolds on polytene chromosomes.  相似文献   

18.
19.
I present here evidence of remarkable local changes in GC/AT substitution biases and in crossover frequencies on Drosophila chromosomes. The substitution pattern at 10 loci in the telomeric region of the X chromosome was studied for four species of the Drosophila melanogaster species subgroup. Drosophila orena and Drosophila erecta are clearly the most closely related species pair (the erecta complex) among the four species studied; however, the overall data at the 10 loci revealed a clear dichotomy in the silent substitution patterns between the AT-biased- substitution melanogaster and erecta lineages and the GC-biased-substitution yakuba and orena lineages, suggesting two or more independent changes in GC/AT substitution biases. More importantly, the results indicated a between- loci heterogeneity in GC/AT substitution bias in this small region independently in the yakuba and orena lineages. Indeed, silent substitutions in the orena lineage were significantly biased toward G and C at the consecutive yellow, lethal of scute, and asense loci, but they were significantly biased toward A and T at sta. The substitution bias toward G and C was centered in different areas in yakuba (significantly biased at EG:165H7.3, EG:171D11.2, and suppressor of sable). The similar silent substitution patterns in coding and noncoding regions, furthermore, suggested mutational biases as a cause of the substitution biases. On the other hand, previous study reveals that Drosophila yakuba has about 20-fold higher crossover frequencies in the telomeric region of the X chromosome than does D. melanogaster; this study revealed that the total genetic map length of the yakuba X chromosome was only about 1.5 times as large as that of melanogaster and that the map length of the X-telomeric y-sta region did not differ between Drosophila yakuba and D. erecta. Taken together, the data strongly suggested that an approximately 20- fold reduction in the X-telomeric crossover frequencies occurred in the ancestral population of D. melanogaster after the melanogaster-yakuba divergence but before the melanogaster-simulans divergence.  相似文献   

20.
To study the microevolutionary processes shaping the evolution of the segmentation gene hunchback (hb) from Drosophila melanogaster, we cloned and sequenced the gene from 12 isofemale lines representing wild-type populations of D. melanogaster, as well as from the closely related species Drosophila sechellia, Drosophila orena, and Drosophila yakuba. We find a relatively low degree of sequence variation in D. melanogaster (theta = 0.0017), which is, however, consistent with its chromosomal location in a region of low recombination. Tests of neutrality do not reject a neutral-evolution model for the whole region. However, pairwise tests with different subregions indicate that there is a relative excess of polymorphic sites in the leader and the intron. Codon usage pattern analysis shows a particularly biased codon usage in the highly conserved regions, which is in line with the hypothesis that selection on translational accuracy is the driving force behind such a bias. A comparison of the expression pattern of hb in different sibling species of D. melanogaster reveals some regulatory changes in D. yakuba, which could be interpreted as changes in the timing of secondary expression domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号