首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Testicular steroidogenic enzymes in the microsomal fraction from immature pigs were investigated for the effects of phospholipids of known structure on androgen and 16-androstene biosynthesis. Untreated (control) microsomes metabolized pregnenolone to 17-hydroxypregnenolone, DHA and small quantities of progesterone, 17-hydroxyprogesterone, androstenedione and testosterone; and to 5,16-androstadien-3 beta-ol (andien-beta) and 4,16-androstadienone (dienone) in the 16-androstene pathway. Phosphatidyl(P)-serine, P-glycerol, P-ethanolamine, P-inositol, P-choline and phosphatidic acid did not significantly alter the 17-hydroxylase/C-17,20 lyase or "andien-beta-synthetase" activities. Thus, the C21 side-chain cleavage reactions appeared not to be dependent upon phospholipids for optimal activity. The conversion of pregnenolone to 4-ene steroids (progesterone, 17-hydroxyprogesterone, androstenedione and testosterone) was inhibited by dilinoleoyl-phosphatidyl-choline, but other phospholipids tested were without effect. On the other hand, the conversion of andien-beta to dienone was inhibited by P-serine, P-inositol and P-cholines with short saturated or long polyunsaturated acyl chains. Therefore, the presence of these phospholipids in pregnenolone incubations had different consequences for 3 beta-hydroxysteroid dehydrogenase-isomerase activities. It is concluded that substrate specific 3 beta-HSD-isomerases exist for androgen and 16-androstene biosynthesis and that phospholipids may play an intrinsic role in their catalytic activity.  相似文献   

2.
Testicular interstitial cells (greater than 90% viable) obtained from 6-day-old and 3-6-week-old piglets were capable of producing dehydroepiandrosterone (DHEA, 5-10 ng/500,000 cells) and responded to hCG (60 mi.u./ml), dibutyryl-cAMP (1 mmol/l) and cholera toxin (5 ng/ml) with a 2-3-fold increase in DHEA. Aminoglutethimide (100 mumol/l) abolished the response. Testosterone was produced in comparatively minor quantities (less than 0.3 ng/500,000 cells) and was unaffected by stimulation or inhibition. When cells from both age groups were incubated with [14C]- or [3H]-pregnenolone (360 and 3.0 nmol/l), 17-hydroxypregnenolone (15%) and DHEA (5-10%) were the major metabolites on the androgen pathway and 5,16-androstadien-3 beta-ol (andien-beta, 5-10%) and 4,16-androstadien-3-one (dienone, 5-10%) on the 16-androstene pathway. Stimulation and inhibition of endogenous steroidogenesis did not alter the metabolism of exogenous pregnenolone, the same metabolites being found in the same proportions at similar times. Microsomal enzyme activities accurately reflected the metabolic profile of pregnenolone metabolism seen in intact cells, with low activities for 17 beta-HSD, 3 beta-HSD-isomerase, and 16-ene-5 alpha-reductase being observed. Since steroidogenic capacity, enzyme complement and pregnenolone metabolism were the same in testes from both age groups, the differences in Leydig cell activity observed in vivo would not appear to be consequences of changes in steroidogenic enzymes or responsiveness to gonadotrophin stimulation. The lack of effect of stimulation and inhibition of steroidogenesis on the cellular metabolism of exogenous pregnenolone suggests that the endogenous and exogenous supplies of pregnenolone are metabolized by different populations of enzymes. The relative magnitudes of these populations indicate that most of the steroidogenic enzymes in the interstitial cells are not involved in the normal response to trophic stimulation.  相似文献   

3.
The submicrosomal localization of enzymes involved in androgen and 16-androstene biosynthesis in rat and boar testis tissue has been studied. 16-Androstene production was not evident in the rat testis but two enzymes concerned with androgen generation (17α-hydroxy C21 steroid C-17,20 lyase; 17β-hydroxysteroid dehydrogenase, were found predominantly in agranular microsomes.In the boar testis the C-17,20 lyase had a similar distribution to the rat enzyme but the 17β-hydroxysteroid dehydrogenase was found be evenly distributed between the two microsomal types. The enzyme system, “andien-β synthetase”, involved in the conversion of pregnenolone to 5,16-androstadien-3β-ol, was found mainly (66%) in the agranular microsomes but had a lower specific activity than those of the two enzymes of androgen biosynthesis that have been studied.  相似文献   

4.
The role of membrane phospholipids in testicular androgen biosynthesis was investigated by monitoring the effects of phospholipase treatments on the activities of the steroid transforming enzymes. Androgen biosynthesis in untreated rat testicular microsomes was examined by monitoring the temporal appearance of pregnenolone metabolites and was found to proceed through the 4-ene route. When phospholipase A2 was included, the 5-ene steroids 17-hydroxypregnenolone and dehydroepiandrosterone (DHEA) were formed in greater quantities, and the production of 4-ene steroids was reduced indicating that the conversion of 5-ene steroids to the 4-ene configuration was inhibited by phospholipase A2 treatment. Phospholipase C, in addition to inhibiting this step, also inhibited the conversion of C21 steroids to C19 steroids. When the enzymatic steps were measured individually, phospholipase A2 inhibited 3 beta-hydroxysteroid dehydrogenase-isomerase (3 beta-HSD-Isomerase) with an ED50 of 73 mU/ml but had no effect on the activities of 17-hydroxylase, C-17, 20 lyase, or 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD). However, though phospholipase C treatment inhibited 3 beta-HSD-Isomerase, it caused less inhibition (the ED50 value was 149 mU/ml). Furthermore, 17-hydroxylase and C-17, 20 lyase activities were also inhibited by phospholipase C treatment (ED50 values were 410 and 343 mU/ml, respectively), but no effect on 17 beta-HSD was observed. The differences in the apparent phospholipid requirements of the steroidogenic enzymes provides the possibility that the metabolic fate of pregnenolone may be regulated by changes in the phospholipid composition of the microenvironment.  相似文献   

5.
We have investigated the effects of two 4-ene-steroid 5 alpha-reductase inhibitors, diethyl-4-methyl-3-oxo-4-aza-5 alpha-androstane-17 beta-carboxamide (4-MA) and (4R)-5,10-seco-19-norpregna-4, 5-diene-3,10,20-trione (SECO), on testicular and epididymal androgen biosynthesis. Kinetic analyses revealed that both compounds inhibited epididymal DHT biosynthesis. 4-MA was a competitive inhibitor of epididymal nuclear and microsomal 4-ene-steroid 5 alpha-reductases (3-oxo-5 alpha-steroid: NADP 4-ene-oxidoreductase EC 1.3.1.22) with Kiapp values of 12.8 and 15.1 nmol/l compared to the respective Kmapp values of 185 and 240 nmol/l. Values for the Vmaxapp were always within 70-130% of the control. SECO at 1.0 mumol/l, also inhibited epididymal nuclear and microsomal 4-ene-steroid-5 alpha-reductases, causing respectively 2.9 and 5.2-fold increases in Kmapp. The Vmaxapp values were unchanged. However, SECO concentrations of 5 and 25 mumol/l abolished 4-ene-steroid 5 alpha-reductase activity at all testosterone concentrations. To examine the specificity of these compounds, we investigated their effects on the enzymes that convert pregnenolone to testosterone. Rat testis microsomes converted pregnenolone to testosterone via the 4-ene-3-oxo pathway, with the major metabolites being progesterone, 17-hydroxyprogesterone, 4-androstenedione and testosterone; some 17-hydroxypregnenolone was also formed. Very small amounts of dehydroepiandrosterone (DHA) and 5-androstenediol were detected. SECO, at a concentration that completely inhibited epididymal 4-ene-steroid 5 alpha-reductase activity, did not alter the metabolic profile of pregnenolone metabolism. However, 4-MA prevented the appearance of 4-ene steroids, and large quantities of 17-hydroxypregnenolone and DHA accumulated, suggesting that inhibition of the 3 beta-hydroxysteroid: NAD(P)+ oxidoreductase (EC 1.1.1.51) and 3-oxosteroid 5-ene-4-ene-isomerase (EC 5.3.3.1) [3 beta-hydroxysteroid dehydrogenase-isomerase] was occurring. Optimal conditions for the microsomal conversion of DHA to 4-androstenedione were determined; kinetic analyses of the 3 beta-hydroxysteroid dehydrogenase-isomerase activity revealed that 4-MA inhibited this reaction non-competitively, reducing Vmaxapp values to 25% of the control. The Kiapp determined from the intercept replot, was 121 nmol/l, and the Kmapp was always between 90 and 130% of the control value. It is concluded that SECO is more specific than 4-MA in its effects on androgen biosynthesis in the testis and epididymis and that both these drugs should provide useful tools in assessments of the relative contributions of 5 alpha-reduced androgens to androgen dependent processes.  相似文献   

6.
The microsomal fraction from the testes of immature pigs (<1 week old) contains 3β-hydroxysteroid dehydrogenase-isomerase (3β-HSD-isomerase) activities that convert dehydroepiandrosterone (DHA) to 4-androstenedione and 5,16-androstadien-3β-ol (andien-β) to 4,16-androstadien-3-one (dienone). These reactions are necessary for the biosynthesis of hormonally and pheromonally active steroids. Kinetic analyses of these activities were done to determine whether they are catalysed by a single enzyme or if there is any interaction between the substrates and products of one reaction on the activity of the other enzyme. Kinetic parameters were determined and the affinities for steroid substrate were similar (7–9 μmol/l) but the Vmaxapp value for the conversion of andien-β to dienone was 10-fold that of the DHA to 4-androstenedione reaction. In analyses of the conversion of DHA to 4-androstenedione, neither andien-β nor dienone inhibited the reaction and especially, no effect on the Kmapp for DHA was observed which would have indicated competition between DHA and andien-β for the same active site (Kiapp from slope and intercept replots were between 3 and 80 times the values of the kinetic constants). Similarly, DHA and 4-androstenedione had minor or negligible effects on the conversion of andien-β to dienone (Kiapp from slope replots were the same as the Kmapp but the Kiapp from the intercept replot was 12 to 25% of the Vmaxapp). It is concluded that substrate specific 3β-HSD-isomerases for andien-β and DHA exist in the immature pig testis and there is little, if any interaction between these enzymes.  相似文献   

7.
Cytochrome p450c17 (CYP17) converts the C21 steroids pregnenolone and progesterone to the C19 androgen precursors dehydroepiandrosterone (DHEA) and androstenedione, respectively, via sequential 17alpha-hydroxylase and 17,20-lyase reactions. Disabling mutations in CYP17 cause combined 17alpha-hydroxylase/17,20-lyase deficiency, but rare missense mutations cause isolated loss of 17,20-lyase activity by disrupting interactions of redox partner proteins with CYP17. We studied an adolescent male with clinical and biochemical features of isolated 17,20-lyase deficiency, including micropenis, hypospadias, and gynecomastia, who is homozygous for CYP17 mutation E305G, which lies in the active site. When expressed in HEK-293 cells or Saccharomyces cerevisiae, mutation E305G retains 17alpha-hydroxylase activities, converting pregnenolone and progesterone to 17alpha-hydroxysteroids. However, mutation E305G lacks 17,20-lyase activity for the conversion of 17alpha-hydroxypregnenolone to DHEA, which is the dominant pathway to C19 steroids catalyzed by human CYP17 (the delta5-steroid pathway). In contrast, mutation E305G exhibits 11-fold greater catalytic efficiency (kcat/Km) for the cleavage of 17alpha-hydroxyprogesterone to androstenedione compared with wild-type CYP17. We conclude that mutation E305G selectively impairs 17,20-lyase activity for DHEA synthesis despite an increased capacity to form androstenedione. Mutation E305G provides genetic evidence that androstenedione formation from 17alpha-hydroxyprogesterone via the minor delta4-steroid pathway alone is not sufficient for complete formation of the male phenotype in humans.  相似文献   

8.
In vitro incubations with slices of two normal human ovaries and 4-14C-pregnenolone as precursor were carried out to study the possibility of a direct influence of chlormadinone acetate on the metabolism of pregnenolone. In agreement with our previous studies the incubations of the ovary from the follicle phase of the cycle yields a profile of steroids different from that of the ovary from the corpus luteum phase of the cycle. Under the experimental condition chosen, the presence of enzymes of the steroidogenic pathway responsible for the synthesis of 17alpha-hydroxy-pregnenolone, DHA, androstenediol (basic metabolites) and androstenedione represents a characteristic profile of steroids of the ovaries from the follicle phase. After the addition of chlormadinone acetate to the incubation medium, the formation of androstenedione was inhibited, whereas the basic metabolites increased. The biosynthesis of progesterone, 17alpha-hydroxyprogesterone, estrone and estradiol represents a characteristic profile of steroids of the ovaries from the corpus luteum phase. After a addition of chlormadinone acetate to the incubation medium, the formation of this characteristic profile of steroids was inhibited. The influence of chlormadinone acetate on the two different profiles of steroids indicated, that chlormadinone acetate exerts an inhibitory effect on the 3beta-hydroxysteroid-dehydrogenase-delta5-4-isome  相似文献   

9.
Microsomal fractions obtained from testes of 3-week-old piglets have been incubated, separately, with progesterone, 17-hydroxyprogesterone, 5-pregnene-3 beta,20 beta-diol, 16 alpha-hydroxypregnenolone, 5-androstene-3 beta,17 alpha-diol and dehydro-epiandrosterone. The metabolites, after derivatization, have been separated by capillary gas chromatography and identified by mass spectrometry. Quantification was by selected ion monitoring. Progesterone was shown to be 17-hydroxylated and also converted into 4,16-androstadien-3-one (androstadienone). The major metabolite of 17-hydroxyprogesterone was 4-androstene-3,17-dione (4-androstenedione), but little, if any, androstadienone was formed, indicating that this particular biosynthesis did not require 17-hydroxylation. The metabolites of 5-pregnene-3 beta, 20 beta-diol were found to be 17-hydroxypregnenolone, 3 beta-hydroxy-5,16-pregnadien-20-one (16-dehydropregnenolone) and 5,16-androstadien-3 beta-ol. Dehydroepiandrosterone and 5-androstene-3 beta,17 alpha-diol were interconvertible but neither steroid acted as a substrate for 16-androstene formation. However, dehydroepiandrosterone was metabolized to a small quantity of 4-androstenedione. Under the conditions used, no metabolites of 16 alpha-hydroxypregnenolone could be detected. The present results, together with those obtained earlier, indicate that the neonatal porcine testis has the capacity to synthesize weak androgens, mainly by the 4-en-3-oxo steroid pathway. Although 16-androstenes cannot be formed from C19 steroids, progesterone served as a substrate and may be converted directly to androstadienone, without being 17-hydroxylated first. The pathway to 5,16-androstadien-3 beta-ol, however, involves 17-hydroxypregnenolone and 16-dehydropregnenolone as intermediates.  相似文献   

10.
The properties of 5-ene-3β-hydroxysteroid oxidoreductase (3β-HSD) from human placental homogenates were studied invitro. The apparent Michaelis constants for 3β-HSD with the substrates pregnenolone (Δ5P) and dehydroepiandrosterone (DHA) were 170 nM and 40 nM respectively. The optimal pH for both these substrates was between 10 and 12. With NAD as the substrate, the Km for pregnenolone was 20 μM and for DHA, 17 μM. The activity of 3β-HSD was inhibited by various steroids. Competitive inhibitors (pregnenolone substrate) included: ethynylestradiol (inhibition constant Ki=7.3 nM), DHA (Ki=46 nM), estradiol-17β (Ki=46 nM), cholesterol (Ki=0.68 μM) and 16α-hydroxydehydroepiandrosterone (16αOHDHA) (Ki=2.2 μM). When the substrate was DHA, competitive inhibition occurred with the following steroids: ethynylestradiol (Ki=6.4 nM), estradiol-17β (Ki=69 nM), pregnenolone (Ki=91 μM), cholesterol (Ki=1.3 μM) and 16αOHDHA (Ki=1.9 μM). 4-Ene-3-ketosteroids such as androstenedione, progesterone (Δ4P), norethindrone and chlormadinone acetate acted as noncompetitive inhibitors towards both substrates.  相似文献   

11.
H Kohara 《Steroids》1988,52(3):295-309
A microsomal fraction of testicular tissue from a patient with prostatic carcinoma was incubated with [4-14C]pregnenolone in the presence of an NADPH-generating system for different periods of time. The metabolites were separated by Sephadex LH-20 column chromatography and then identified by thin-layer chromatography, radio-gas chromatography, and crystallization studies. Pregnenolone was converted to a major metabolite, 5-androstene-3 beta,17 beta-diol via 17-hydroxypregnenolone and then dehydroepiandrosterone. Another major metabolite was 5,16-androstadien-3 beta-ol, which increased with the time of incubation and accumulated in the incubation medium. After 120 min of incubation, 34.6% of the precursor was converted to 5-androstene-3 beta,17 beta-diol and 15.1% to 5,16-androstadien-3 beta-ol. In addition to the above-mentioned steroids, 16 alpha-hydroxypregnenolone, 5-pregnene-3 beta,20 alpha-diol, and 5-androstene-3 beta,17 alpha-diol were identified as minor metabolites of pregnenolone. From these results it was concluded that human testicular microsomes possess enzymic activities for the synthesis of 5,16-androstadien-3 beta-ol, as well as androgens from pregnenolone.  相似文献   

12.
Twelve neuroactive and neuroprotective steroids, androgens and androgen precursors i.e. 3alpha,17beta-dihydroxy-5alpha-androstane, 3alpha-hydroxy-5alpha-androstan-17-one, 3alpha-hydroxy-5beta-androstan-17-one, androst-5-ene-3beta,17beta-diol, 3beta,17alpha-dihydroxy-pregn-5-en-20-one (17alpha-hydroxy-pregnenolone), 3beta-hydroxy-androst-5-en-17-one (dehydroepiandrosterone, DHEA), testosterone, androst-4-ene-3,17-dione (androstenedione), 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone), 3beta-hydroxy-pregn-5-en-20-one (pregnenolone), 7alpha-hydroxy-DHEA, and 7beta-hydroxy-DHEA were measured using the GC-MS system in young men before and after ejaculation provoked by masturbation. The circulating level of 17alpha-hydroxypregnenolone increased significantly, whereas the other circulating steroids were not changed at all. This fact speaks against the hypothesis that a drop in the level of neuroactive steroids, e.g. allopregnanolone may trigger the orgasm-related increase of oxytocin, reported by other authors.  相似文献   

13.
3beta-Hydroxypregn-5-en-20-one (pregnenolone) and NAD+ were incubated with a solubilized preparation of the coupled enzyme 3beta-hydroxysteroid:NAD(P) oxidoreductase-3-ketosteroid delta4,delta5-isomerase (3beta-hydroxysteroid dehydrogenase: delta5-isomerase) from the mitochondrial fraction of human placenta. Unconverted pregnenolone, pregn-4-ene-3,20-dione (rogesterone), and a small but detectable amount of pregn-5-ene-3,20-dione were isolated from the medium by Sephadex LH-20 chromomatography. The identification of pregn-5-ene-3,20-dione, confirmed by mass fragmentography, has provided the first direct evidence for the formation of the hypothetical delta5,3-ketone intermediate in the conversion of pregnenolone to progesterone. When tritium-labeled pregnenolone and [4-14C]pregnenolone were incubated simultaneously the 3H:14C ratio in isolated pregn-5-ene-3,20-dione was 4.6 times greater than in isolated progesterone and pregnenolone, indicating a kinetic isotope effect in the enzymatic isomerization of tritium-labeled pregn-5-ene-3,20-dione. Exposure of the enzyme to two steroids which inhibit the overall enzyme reaction, 2alpha-cyano-17beta-hydroxy-4,4,17alpha-trimethylandrost-5-en-3-one (cyanoketone) and 3-hydroxyestra-1,3,5(10),6,8-pentaen-17-one (equilenin), increased the relative yield of labeled pregn-5-ene-3,20-dione as well as the recovery of radioactivity remaining as unconverted pregnenolone, suggesting that both the dehydrogenase and isomerase activities were inhibited. Exposure of the enzyme to equilenin increased the ratio of isolated pregn-5-ene-3,20-dione radioactivity to progesterone radioactivity as progesterone synthesis was inhibited. Equilenin also diminished the tritium isotope effect on the isomerase reaction. Both findings suggest that it is possible to inhibit the isomerase to a greater extent than the dehydrogenase. In order to measure the rate of progesterone produced by the coupled enzymes, we have modified a radiochemical method which involves precipitation of pregnenolone by digitonin. Digitonin precipitation proved to be effective in separating unconverted pregnenolone from the steroid products of both enzyme reactions, progesterone and pregn-5-ene-3,20-dione. Neither the steroidal inhibitors nor the kinetic isotope effect altered the accuracy of the method for routine measurement of the overall rate of conversion of delta5,3beta-hydroxysteroid to delta4,3-ketosteroid.  相似文献   

14.
Follicles isolated 1 and 2 days after pentobarbitone sodium injection at pro-oestrus were incubated with C-21 steroids or aromatizable C-19 steroids. Addition of testosterone or androstenedione (50 ng/ml) increased oestradiol production by ovulation-blocked follicles, while addition of progesterone or 17 alpha-hydroxyprogesterone was ineffective. LH-stimulated oestradiol production was lower in follicles isolated 1 and 2 days after pentobarbitone sodium injection, but progesterone production was elevated compared to pro-oestrous follicles. Total steroidogenesis, measured by pregnenolone production in the presence of inhibitors of pregnenolone conversion, did not differ on the 3 days. The activity of C17-20 lyase, measured in follicular homogenates, decreased between pro-oestrus and the next day. Aromatase and 17 alpha-hydroxylase activities also decreased, but the activity of these enzymes was always considerably higher than that of C17-20 lyase. It is concluded that the decrease in follicular oestradiol production after injection of pentobarbitone sodium was due primarily to a decrease in the activity of the enzyme system responsible for the conversion of 17 alpha-hydroxyprogesterone to androstenedione, thereby limiting the amount of substrate available for aromatization to oestrogen.  相似文献   

15.
Odorous steroids, specifically the 16-androstenes, 5alpha-androstenol and 5alpha-androstenone, are widely accepted as being contributors to underarm odour, but the precursors and pathways to these odorous steroids were unclear. This study demonstrated that the axillary microflora could only generate odorous 16-androstenes from precursors that already contain the C16 double bond, such as 5,16-androstadien-3-ol and 4,16-androstadien-3-one. In incubations containing 5,16-androstadien-3-ol, mixed populations of Corynebacterium spp., isolated from the axilla, could generate many different 16-androstene metabolites, several of which were odorous. Isolation of individual Corynebacterium strains, followed by pure culture incubations with 5,16-androstadien-3-ol, revealed organisms capable of efficient, rapid reactions. However, no single isolate could carry out a full complement of the observed biotransformations. 16-Androstene metabolites were identified by gas chromatography-mass spectrometry (GC-MS), either by comparison with known standards, or by prediction from molecular ion and fragmentation patterns. Based on detection of these metabolites, a metabolic map for axillary corynebacterial 16-androstene biotransformations was proposed, detailing potential enzyme activities. In summary, the formerly implicated 4,16-androstadien-3-one, 5alpha-androstenone and 5alpha-androstenol were detected, along with previously unreported hydroxy- and keto-substituted 16-androstenes, 16-androstatrienones and 16-androstatrienols. Additionally, many other metabolites with steroidal fragmentation patterns were present, but have remained unidentified.A key observation was that very low prevalences of microorganisms capable of biotransforming 16-androstenes were present on skin. For example, from a panel of 21 individuals, only 4 of 18 mixed populations of corynebacteria, and only 4 of 45 Corynebacterium isolates, could biotransform 5,16-androstadien-3-ol.This study has increased understanding of the metabolic pathways involved in steroidal malodour formation, and has demonstrated that the biotransformations are more complex than previously anticipated. However, it is clear that further research is required, both to assess the level of contribution of 16-androstenes to underarm odour, and to further elucidate the pathways and odour molecules formed by corynebacteria.  相似文献   

16.
Recently, we have shown that the biosynthesis of androstenol, a potential endogenous ligand for the orphan receptors constitutive androstane receptor and pregnane-X-receptor, requires the presence of enzymes of the steroidogenic pathway, such as 3 beta-hydroxysteroid dehydrogenase, 5 alpha-reductase and 3 alpha-hydroxysteroid dehydrogenase. In this report, we examine at the molecular level whether the enzyme 17 alpha-hydroxylase/17,20-lyase (P450c17), which possesses dual 17 alpha-hydroxylase and 17,20-lyase activities and catalyzes the production of precursors for glucocorticoids and sex steroids, is also able to catalyze the formation of a third class of active steroids, 16-ene steroids (including androstenol). The role of components of the P450 complex is also assessed. We transfected human embryonic kidney (HEK-293) cells with various amounts of vectors expressing P450c17, NADPH-cytochrome P450 reductase, and cytochrome b5. Our results showed that P450c17 possesses a 16-ene-synthase activity able to transform pregnenolone into 5,16-androstadien-3 beta-ol, without the formation of the precursor 17-hydroxypregnenolone. Cytochrome b5 has a much stronger effect on the 16-ene-synthase activity than on the 17 alpha-hydroxylase/17,20-lyase activities. On the other hand, P450reductase has a drastic effect on the latter, but a negligible one on 5,16-androstadien-3 beta-ol synthesis. Our results therefore demonstrate that human P450c17, as other enzymes of the classical steroidogenic pathway, is involved in the biosynthetic pathway leading to the formation of androstenol.  相似文献   

17.
Slices of an adreno-cortical adenoma which had been obtained at operation from an 11-year-old girl with clinical signs of virilism were incubated with each of the following steroids: [1,2-3H]progesterone, [4-14C]pregnenolone, [1,2-3H]testosterone, [4-14C]androstenedione and [7-3H]dehydroepiandrosterone, respectively. Isolation and identification of the free radioactive metabolites were achieved by gel column chromatography on Sephadex LH-20, thin-layer chromatography, radio gas chromatography and isotope dilution. After incubation of progesterone, the following metabolites were identified: 11beta-hydroxyprogesterone, 16alpha-hydroxyprogesterone, 17alpha-hydroxyprogesterone, 21-deoxycortisol, corticosterone and cortisol. Pregnenolone was metabolized to 17alpha-hydroxypregnenolone, progesterone, dehydroepiandrosterone, androstenedione and 11beta-hydroxyandrostenedione. When testosterone was used as substrate, 11beta-hydroxytestosterone, androstenedione and 11beta-hydroxyandrostenedione were found as metabolites, whereas androstenedione was metabolized to testosterone and 11beta-hydroxyandrostenedione. After incubation of dehydroepiandrosterone, only androstenedione and 11beta-hydroxyandrostenedione were isolated and identified. From these results, it appears that cortisol was formed in the adenoma tissue via 21-deoxycortisol and corticosterone. Delta4-3oxo steroids of the C19-series arose exclusively from pregnenolone via 17alpha-hydroxypregnenolone and dehydroepiandrosterone, and not from progesterone and 17alpha-hydroxyprogesterone. Calculated on the amounts of metabolites formed, the highest enzyme activities were those of the 11beta-hydroxylase and the 17alpha-hydroxylase. It is interesting to note that only traces of testosterone were detected after incubation of androstenedione, whereas testosterone yielded large amounts of androstenedione.  相似文献   

18.
In vitro biosynthesis of gonadal steroids from dehydroepiandrosterone was studied in isolated and in socially reared male and female rats. Acetone-dried powder of gonadal tissue incubated with dehydroepiandrosterone-4-14C yielded androstenedione, androst-5-ene-3beta, 17beta-diol, 11beta-hydroxyandrostenedione and testosterone. In the male, conversion to androstenedione was significantly increased after isolation and conversion to androst-5-ene-3beta, 17beta-diol was significantly lowered. In the female, conversion to androstenedione and androstenediol was significantly lowered by isolation. Testosterone and 11beta-hydroxyandrostenedione were not affected by isolation. Gonadal tissue of isolated and of socially reared male and female rats metabolizes dehydroepiandrosterone in a different way. These findings support the view that the conditions of housing affect the production of sex steroids.  相似文献   

19.
We have investigated the potential of autonomous hormonal steroidogenesis in liver and small intestine of male and female frogs, Rana esculenta, during the recovery phase. After incubation of mitochondrial fractions with [4-14C]cholesterol, female liver and intestine formed pregnenolone at a rate of 0.63 and 2.3 pmol/mg protein/h, respectively, whereas conversion by male organs was only c. 0.03 pmol/mg protein/h. Minced tissues preparations transformed [4-14C]pregnenolone into progesterone and 17alpha-hydroxypregnenolone, the former prevailing in the liver, the latter in the intestine. Moreover, both tissues produced 20alpha-dihydropregnenolone, 20alpha-dihydroprogesterone and dehydroepiandrosterone. From incubates with [4-14C]dehydroepiandrosterone, androstenedione and androst-5-ene-3beta, 17beta-diol were identified, the former being more abundant in the liver, the latter in the intestine. These results indicate that both liver and intestine in frog can be independent sources of hormonally active steroids in both sexes.  相似文献   

20.
The substrate specificity of the reconstituted delta 16-C19-steroid synthetase system, which catalyzes the formation of 5,16-androstadien-3 beta-ol or 4,16-androstadien-3-one from pregnenolone or progesterone, respectively, was studied. The reconstituted system consisted of a partially purified cytochrome P-450, NADPH-cytochrome P-450 reductase, cytochrome b5 and NADH-cytochrome b5 reductase all from pig testicular microsomes. It was found that 5 alpha-reduced C21 steroids such as 5 alpha-pregnane-3,20-dione, 3 alpha-hydroxy-5 alpha-pregnan-20-one and 3 beta-hydroxy-5 alpha-pregnan-20-one can be substrates for the enzyme system, resulting in the formation of 5 alpha-androst-16-en-3-one, 5 alpha-androst-16-en-3 alpha-ol and 5 alpha-androst-16-en-3 beta-ol, respectively. The results suggest that 5 alpha-reduced delta 16-C19 steroids might be synthesized from pregnenolone and progesterone via 5 alpha-reduced C21 steroids as intermediates. The pathways would bypass 5,16-androstadien-3 beta-ol and 4,16-androstadien-3-one which have been assumed as obligatory intermediates in the formation of 5 alpha-reduced delta 16-C19 steroids from pregnenolone and progesterone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号