首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of transpiration rate on the vertical gradientsof leaf and stem xylem water potential ( and ) were examinedusing hydroponic sunflower plants. Transpiration was variedby stepwise alterations of environmental conditions. The gradientsof and were relatively small (2.3 and 0.8 x 105 Pa m–1)when transpiration rates approached zero, but increased sharplyto 5.4 and 2.3 x 105 Pa m–1 as transpiration increased.However, the gradients were independent of transpiration ratesabove 0.4 g dm–2 h–1 owing to variability of theplant resistance. The gradients of I were usually less thanhalf those of I. 1 in individual leaves remained constant over a wide range oftranspiration rates (0.4—2.4 g dm–2 h–1) andeach leaf possessed a characteristic plateau value related toits elevation. I responded similarly but was approximately 2.0x 105 Pa higher than I at the same elevation. Identical resultswere obtained regardless of the procedure employed to vary transpiration. The drop in water potential between stem and leaf implies thatthe leaf resistance is appreciable. This was confirmed usingrapidly transpiring excised leaves freely supplied with water.I increased by 2.0–2.5 x 105 Pa following removal of theroot resistance but remained 2 x 105 Pa lower than similar excisedleaves in darkness. Furthermore, I in excised leaves remainedconstant over a wide range of transporting rates, demonstratingthat the leaf resistance is also variable. The results are discussed in relation to previous reports.  相似文献   

2.
Leaf diffusion resistance interpreted as stomatal resistance,leaf water potential (w), solute potential (s) and leaf turgorpotential (p) of the chilling sensitive species Phaseolus vulgariswere determined during chilling at 4 °C in the light. Bothchill-hardened and non-hardened plants were used. For comparison,the chilling resistant species Pisum sativum was also used. The results for chilled P. sativum were similar to those obtainedfor chill-hardened P. vulgaris plants receiving a chilling treatment.In both cases a reduction in stomatal aperture and the maintenanceof a positive leaf turgor were the responses to chilling. Leavesof chilled but non-hardened P. vulgaris plants were found tomaintain open stomata throughout the chilling treatment despitea severe wilt developing after 7 h at 4 °C. This was incontrast to the chill-resistant P. sativum. which showed a rapidclosing and subsequent re-opening of the stomata to a new reducedaperture. During the first 12 h of chilling wof P. vulgaris leaves changedfrom –0.47 MPa to –1.24 MPa. On more prolonged chillingw tended to return to pre-chilling values. In addition. p decreasedfrom 0.42 MPa to zero after only 9 h of chilling, and remainedat this value for the remainder of the chilling period, s, changedrapidly from –0.89 MPa to –1.35 MPa in the first7.5 h, and after 9 h. w and s, were equal, i.e. zero p. In contrast,the chilling resistant plant P. sativum maintained a positivep throughout the chilling period, and there was little differencebetween values of w, and s in control and chilled leaves. Key words: Chilling, Stomata, ater relations, Phaseolus vulgaris, Pisum sativum  相似文献   

3.
Control of Passive Permeability in the Chara Plasmalemma   总被引:2,自引:0,他引:2  
Conductance to K+ alters as a function of membrane potential(m). Conductance to H+ (or OH) changes with externalpH (pHo) This conductance change can be modulated by alteringcytoplasmic pH or external K+ concentration, both of which alsoalter m. We suggest a role for H+ conductance in regulatingcytoplasmic pH above pHo 7.0.  相似文献   

4.
In recent years alternative ways have been proposed to transformmeasurements of leaf water potential, , and relative water content,R*, in order to derive values of osmotic pressure at full turgidityin leaves and shoots, o(when 0). Two types of transformationsare usually considered: 1/ versus R* and versus 1/R*, and linearregression is used to fit the data in the region where turgoris thought to be zero. It appears that when o is estimated bylinear extrapolation of 1/Psi; versus R* then apoplastic watermight not influence the accuracy of o but when the versus \/R*transformation is used apoplastic water causes an underestimateof o. We examine the accuracy of the estimate of o obtainedfrom the two transformations when there are random errors in, systematic errors in , and when the osmotic solutions arenon-ideal. The 1/ versus R* transformation generally producesthe best estimate of 0 by linear extrapolation.  相似文献   

5.
This work aimed to study the impacts of acquisition and assimilationof various nitrogen sources, i.e. NO3, NH4+ or NH4NO3,in combination with gaseous NH3 on plant growth and acid-basebalance in higher plants. Plants of C3 Triticum aestivum L.and C4 Zea mays L. grown with shoots in ambient air in hydroponicculture solutions with 2 mol m–3 of nitrogen source asNO3, NH4+ or NH4NO3 for 21 d and 18 d, respectively,had their shoots exposed either to 320 µg m–3 NH3or to ambient air for 7 d. Variations in plant growth (leaves,stubble and roots), and OH and H+ extrusions as wellas the relative increases in nitrogen, carbon and carboxylatewere determined. These data were computed as H+/N, H+/C, (C-A)/N,and (C-A)/C to analyse influences of different nitrogen sourceson acid-base balance in C3 Triticum aestivum and C4 Zea maysplants. Root growth in dry weight gain was significantly reduced bytreatment with 320 µg m–3 NH3 in Triticum aestivumand Zea mays growing with different N-forms, whereas leaf growthwas not significantly affected by NH3. In comparison with C3Triticum aestivum, non-fumigated C4 Zea mays had low ratiosof OH/N in NO3–3-grown plants and of H+/N in NH4+- and NH 4NO3-grown plants. Utilization of NH3 from the atmospherereduced both the OHN ratios in NO3 -grown plantsand the H+/N ratio in NH4+ - and NH4NO3 -grown plants of bothspecies. Furthermore, Zea mays had higher ratios of (C-A)/Nin NH4+ - and NH4NO3-grown plants than Triticum aestivum. Thismeans that C4 Zea mays had synthesized more organic anion perunit increase in organic N than C3 Triticum aestivum plants.Within both species, different nitrogen sources altered theratios of (C-A)/N in the order: NH4NO3>NH4+>NO3.Fumigation with NH3 increased organic acid synthesis in NO3- and NH4+ - grown plants of Triticum aestivum, whereas it decreasedorganic acid synthesis in Zea mays plants under the same conditions.Furthermore, these differences in acid-base regulation betweenC3 Triticum aestivum and C4 Zea mays plants growing with differentnitrogen sources are discussed. Key words: Acid-base balance, ammonia, ammonium, nitrate, ammonium nitrate, C3 Triticum aestivum L., C4 Zea mays L.  相似文献   

6.
Henson, I. E. 1985. Solute accumulation and growth in plantsof pearl millet (Pennisetum americanum [L.] Leeke) exposed toabscisic acid or water stress.—J. exp. Bot. 36: 1889–1899.Experiments were conducted to investigate whether abscisic acid(ABA) elicits the accumulation of solutes and lowering of osmotic(solute) potential (2) which occurs in leaves of pearl millet(Pennisetum americanum [L.] Leeke) exposed to water stress.When (?)–ABA was injected into the base of the shoot of15–d–old plants, 2 of the fifth leaf was reducedsignificantly below controls 27–72 h after treatment.The reductions, however, were small (< 0.10 MPa) and wereaccompanied by a significant inhibition of shoot growth. Incontrast, no significant reduction in 2 or in growth occurredwhen the hormone was introduced directly into leaf five viaits mid–rib. ABA concentrations in leaf five were highshortly after direct injection, but declined to control levelswithin 48 h. Injecting ABA into the shoot base resulted in lowerleaf five ABA concentrations. Hence, the ABA concentration inthe leaf was not the most critical factor for its effect on2. ABA also reduced 2 of shoots when applied to seedlings 48h or 72 h after sowing via the roots. As with older plants,the effects of ABA on 2 were small ( 0–2 MPa) and wereaccompanied by inhibition of shoot growth. A water stress treatmentand an ABA treatment were compared. Although both treatmentsresulted in a similar degree of growth inhibition, the stresstreatment was much more effective than was ABA in reducing 2. Key words: Pennisetum americanum [L.], pearl millet, abscisic acid, water stress, osmotic  相似文献   

7.
Larqué-Saavedra, A., Rodriguez, M. T., Trejo, C. andNava, T. 1985. Abscisic acid accumulation and water relationsof four cultivars of Phaseolus vulgaris L. under drought.—J.exp. Bot 36: 1787–1792. Plants of four cultivars of Phaseolus vulgaris L. differingin drought resistance were grown in pots under greenhouse conditionsand prior to flowering water was withheld from the pots untilthe mid-day transpiration rate reached values below 1.0 µgH2O cm–2 s–1 (designated the ‘drought’stage). At this point leaves were harvested on 3 or 4 occasionsover 24 h to determine the abscisic acid (ABA) concentration,total water potential (), solute potential (1) and turgor potential(p). Results showed that values of , 1, and p differed between cultivarswhen they reached the ‘drought’ stage. The stomatalsensitivity to changes in and p, was as follows: Michoacán12A3 > Negro 150 Cacahuate 72 > Flor de Mayo. These datacorrelated well with the pattern of drought resistance reportedfor the cultivars. ABA accumulation at the ‘drought’ stage differedbetween cultivars at each sampling time, but overall differencesin ABA level between cultivars were not significant. ABA levelsdid not, therefore, correlate with the drought resistance propertiesreported for the cultivars. Results are discussed in relationto and hour of the day when bean samples were taken for ABAanalysis. Key words: Phaseolus vulgaris L., drought resistance, abscisic acid  相似文献   

8.
The effects of -hydroxy-2-pyridinemethanesulphonic acid (-HPMS)upon net photosynthesis (Pn, the CO2 compensation point (),post-lower illumination burst of CO2 (PLIB) and post-lower temperatureburst of CO2 (PLTB) in detached rye (Secale cereale L.) leaveswere investigated. At low concentrations ( 0.5 mol m–3),-HPMS initially stimulated Pn and decreased the magnitude ofboth PLIB and PLTB. The decreased at all concentrations of-HPMS (0.05–5.0 mol m–3. The effects of -HPMS onPn and were time-dependent and, after a few minutes, the Pnwas inhibited while values increased considerably. At a higherconcentration (5.0 mol m –3), the transient effects of-HPMS were shorter () or not observed at all (Pn. Both PLIBand PLTB, when expressed in relation to Pn, increased at higherlevels of this compound. Similar data with respect to the effectsof -HPMS on PLIB and PLTB were found for leaves of dandelion(Taraxacum officinale L.). The results suggest that -HPMS may stimulate Pn by inhibitingphotorespiration, as originally suggested by Zelitch (1966),but only at low concentrations and over a short time span. Thedecrease of PLIB and PLTB values at low -HPMS levels is consistentwith these processes being a residual activity of the glycolatepathway. Key words: CO2 compensation point, -hydroxy-2-pyridinemethanesulphonic acid, photorespiration, photosynthesis  相似文献   

9.
Smith, J. R. 1987. Potassium transport across the membranesof Chara. II. 42K fluxes and the electrical current as a functionof membrane voltage.—J. exp. Bot. 38: 752–777. The current required to clamp the trans-membrane voltage ofinternodal cells of Chara australis at different levels wasmeasured simultaneously with either the 42K influx or efflux.Examination of the voltage-dependence of the ratio of the electricalcurrent to the unidirectional tracer fluxes yielded no evidenceof any amplification of the electrical driving force on theK+ ions. There was thus no evidence for the interaction of K+ions with themselves or any other species during their passageacross the membrane. These measurements allow the determinationof , the fraction of the electrical current carried by K+ ions.When the external [K+] = 10 mol m–3, the average valueof was 0?85 for Vm > –125 mV and 07?5 for Vm <–150 mV. When the external [K+] = 0?1 mol m–3, was 0?6 for Vm < –80 mV and 0?1 for Vm > –250mV. It was also found that the conductance associated with K+transport was inhibited by hyperpolarization. Key words: Potassium, conductance, flux-ratio  相似文献   

10.
The water potential () at which stomata completed closure (8Lmin)was determined for pearl millet (Pennisetum americanum [L.]Leeke) at two growth stages by monitoring changes in leaf conductance(gL) and following shoot detachment. Leaf water status wasevaluated concurrently using a pressure-volume (P-V) technique. In a pot experiment with young vegetative plants, 8Lmin closelyapproximated to the estimated at zero turgor (u) both for controland for drought-conditioned plants which had osmotically adjusted.However, for penultimate leaves of field-grown flowering plants,8Lmin was found to be 0.61 (irrigated plants) and 0.87 (droughtedplants) MPa below u. In drought-stressed field-grown plants,osmotic adjustment (characterized by a decrease in solute (osmotic)potential (s ) at both full hydration and zero turgor) was insufficientto maintain a positive bulk leaf turgor potential (p) once had declined to below about -1.5 MPa. It is suggested that localizedadjustment by the stomatal complex in response to environmentaldifferences, leaf ageing and/or ontogenetic change, is responsiblefor the uncoupling of stomatal from bulk leaf water status. Key words: Stomata, Water stress, Pennisetum americanum  相似文献   

11.
The effect of Chromium VI on leaf water potential (w), solutepotential (a), turgor potential (p) and relative water content(RWC) of primary and first trifoliatc leaves of Phaseolus vulgarisL. was studied under normal growth conditions and during anartificially induced water stress period in order to establishthe possible influence of this heavy metal on the water stressresistance of plants. Plants were grown on perlite with nutrientsolution containing 0, 1•0, 2•5, 5•0 or 10•0µg cm–3 Cr as Na2Cr2O7.2H2O. The effect of Cr onwater relations was highly concentration dependent, and primaryand first trifoliate leaves were affected differently. The growthreducing concentrations of Cr (2•5, 5•0 and 10•0µg cm–3) generally decreased s and w and increasedp in primary leaves. The 1•0 µg cm–3 Cr treatmentdid not affect growth, but altered water relations substantially:in primary leaves w and p were increased and s decreased, whilein trifoliate leaves the effect was the opposite. All Cr treatedplants resisted water stress for longer than control plants.The higher water stress resistance may be due to the lower sand to the increased cell wall elasticity observed in Cr VItreated plants. Key words: Phaseolus vulgaris, Chromium VI, water stress, Richter plot  相似文献   

12.
The Meaning of Matric Potential   总被引:6,自引:1,他引:5  
The commonly used equation, = P - + , which describes thepartitioning of plant water potential, , into components ofhydrostatic pressure, P, osmotic pressure, , and matric potential,, is misleading. The term , which is supposed to show the influenceof a solid phase on , is zero if a consistent definition ofpressure is used in the standard thermodynamic derivation. However,it can be usefully defined by = + D, where D is the osmoticpressure of the equilibrium dialysate of the system. The practicaland theoretical significance of this definition is discussed.  相似文献   

13.
By analysing the relationship between inverse water potential(–1), and relative water content (RWC) measured on leavesof roses (Rosa hybrida cv. Sonia), grown soilless, it was foundthat a non-linear (NL) model was better suited than a linearmodel to reproduce values observed in the non-turgid region.To explain this apparent curvature, it is assumed that a reductionof the non-osmotic water fraction (Ap) takes place when decreases.Osmotic potentials () measured on fresh and frozen leaf discstend to support this hypothesis. A method for exploiting PVcurves, which takes into account the variation of Ap, is described.It delivers values for the turgor pressure (p), the relativeosmotic water content, and the mean bulk volumetric elasticitycoefficient, lower than those given by the linear model. Onthe other hand, it gives higher estimates for Ap and for . Whenapplying the traditional model to obtain estimates for waterrelations characteristics of rose leaves, and comparing resultsfrom two distinct salinity treatments (electrical conductivitiesof 1·8 mS cm–1 and 3·8 mS cm–1, respectively),one deduces a significant reduction of at turgor-loss in thehigh salinity treatment. The NL method is, in addition, ablesimultaneously to reveal a reduction of and a significant increasein p at RWC=100% this proves that soilless–grown roseplants are able to osmoregulate when subjected to a constantand relatively high degree of salinity. Key words: Apoplastic water, non-linear regression, pressure-volume curves, tissue-water relations  相似文献   

14.
A pressure-volume (P-V) and an expressed sap (cryoscopic) techniquewere compared for assessing osmotic adjustment to water stressby pearl millet (Pennisetum americanum (L. ) Leeke) plants grownin a controlled environment cabinet. For leaf water potentials( ) above the point of zero turgor, there was good agreementbetween estimates of solute potential ( s)and turgor ( p) obtainedby the two methods. Reductions in pre-dawn leaf to –1.8 MPa over 5–6d resulted in net solute accumulation as indicated by a fallin s at full hydration of about 0.3 MPa. The degree of osmoticadjustment increased linearly with the decrease in pre-dawn. Adjustment in cv. BJ 104 was significantly (P < 0.05) lessduring a second drought than during a first, and cv. Serere39 was significantly (P < 0.05) less able to adjust osmoticallythan BJ 104. Adjustment was greater in leaves which were undergoing extensiongrowth during the drought than in leaves already fully extendedbefore drought started. Much of the adjustment was lost within24 h following rewatering, the loss being most complete in theolder, fully extended leaves.  相似文献   

15.
Changes in components of leaf water potential during soil waterdeficits influence many physiological processes. Research resultsfocusing on these changes during desiccation of peanut (Arachishypogeae L.) leaves are apparently not available. The presentstudy was conducted to examine the relationships of leaf waterl, solute s and turgor p potentials, and percent relative watercontent (RWC) of peanut leaves during desiccation of detachedleaves and also during naturally occurring soil moisture deficitsin the field. The relationship of p to l and RWC was evaluated by calculatingp from differences in l and s determined by thermocouple psychrometryand by constructing pressure-volume (P-V) curves from the land RWC measurements. Turgor potentials of ‘Early Bunch’and ‘Florunner’ leaves decreased to zero at l of–1.2 to –1.3 MPa and RWC of 87%. There were no cultivardifferences in the l at which p became zero. P-V curves indicatedthat the error of measuring s after freezing due to dilutionof the cellular constituents was small but resulted in artefactualnegative p values. Random measurements on two dates of l, s, and calculation ofp from well-watered and water-stressed field plots consistingof several genotypes indicated that zero p occurred at l of–1.6 MPa. It was concluded that the relationships of p,l, s, and RWC of peanut leaves were similar to leaves of othercrops and that these relationships conferred no unique droughtresistance mechanism to peanut.  相似文献   

16.
The euryhaline charophyte Lamprothamnium papulosum (Wallr.)J. Gr. was adapted to media with decreasing salinities rangingfrom 550 to 0 mosmol kg–1. Vegetative plants grown inmedia with osmotic pressures (0) in the range of 550 to 130mosmol kg–1 maintained a constant turgor pressure () at309 + 7 mosmol kg–1. The ions K+, Na+ and Cl–, werethe predominant solutes in the vacuole. Changes in their concentrationsaccount for the variation in internal osmotic pressure (1) with,0. The divalent ions Mg2+, Ca2+ and were also present in significant amounts, but their concentrationsdid not alter with changes in, 0. In cells subjected to hypo-osmotic shock the regulation of was incomplete. The turgor pressure increased from 302 to 383mosmol kg–1. The first rapid response to the sudden decreasein 0 was a loss of K+ and Cl. In contrast to the decreasein ionic concentrations an accumulation of sucrose occurredwhich could account for the increase of . The increase in sucroseconcentration started 24 to 48 h after the downshock and reachedits highest value after 3 to 4 weeks. The sucrose concentrationin the vacuole was up to 320 mol m–3. During this timethe ionic content continued to decrease but did not counterbalancethe sucrose concentration sufficiently to regain the original. High sucrose levels accompanied by an enhanced were also observedduring the period of fructification (sexual reproduction: formationof antheridia and oogonia) in Lamprothamnium kept under conditionsof constant salinity. It is concluded that high sucrose content and elevated arecharacteristic of sexual reproduction in this charophyte. Lamprothamniumis able to tolerate different during various developmentalstages (e.g. vegetative and reproductive phases). Key words: Lamprothamnium papulosum, sucrose, turgor pressure  相似文献   

17.
The hypothesis that soil water potential (s) is better correlatedto heliotropic leaf orientation, photosaturated photosyntheticCO2 assimilation and stomatal conductance during periods oflimited water availability than is bulk leaf water potential(1) was examined in greenhouse-grown soybean (Glycine max) plants,submitted to a progressive drought. Paired plants were exposedto either 1000 or 100 µmol m–2 s–1 photonflux densities (PFD) for 45–60 mins. The higher irradianceinduced short-term decreases in 1, due to increased transpiration,while l in the plant exposed to low PFD did not decrease. Thesechanges in 1 occurred independently of changes in soil waterstatus. Concurrent to the light treatments, a single attachedleaf from each of the two plants was isolated from the restof the plant by shading, and the pulvinus of its terminal leafletwas exposed to a perpendicular PFD of 500 µmol m–2S–1. Leaf movement of this leaflet was recorded in responseto this light, until a stable leaflet angle was achieved. Valuesof s and l (before and after light treatment), and photosaturatedrates of photosynthesis and stomatal conductance, were thenmeasured on these leaves. Leaflet angle and gas exchange werebetter correlated with s (r2 = 0.50, 0.50 and 0.57 for angle,photosynthesis and conductance, respectively) than with l especiallywhen l was the result of short-term, high-light induced changesin leaf water status (r2 = 0.36, 0.32 and 0.49, for the sameparameters). Leaflet angle was also correlated with stomatalconductance (r2 = 0.61) and photosynthetic rate (r2 = 0.60),suggesting a close association between leaf orientation, leafmetabolism and soil water availability. Glycine max (L.) Merr. cv. Essex, soybean, heliotropism, water potential, photosynthesis, stomatal conductance, solar tracking  相似文献   

18.
Corrigendum     
Light response curves for (•) gross 16O2 evolution, and() CO2 uptake in 210 mmol mol–1 O2 with 900–1000µbar CO2 or () in air by leaves of Hirschfeldia incana.The difference between (•) and () or () was quantitativelyequivalent to the measured 18O2 uptake. The areas under thecurves are labelled to identify regions of assimilatory andnon-assimilatory electron flow redrawn from data of Canvin etal. (1980). It should be noted that the data and the labelling of the figureaxes are correct as printed.  相似文献   

19.
Diurnal variation in leaf abscisic acid (ABA) content was investigatedin pearl millet (Pennisetum americanum (L. ) Leeke) growingin the field in the semi-arid tropics and subjected to varyingdegrees of water stress. There was a two- to three-fold change in ABA content duringthe photoperiod in three groups of ‘severely’ stressedplants of the genotype BJ 104. Maximum ABA occurred mid-morning(1030 h). ABA levels then declined to a minimum at 1500 h. Changesin ABA content of ‘moderately’ stressed and fullyirrigated plants were smaller, but still significant. Though,when averaged over the day, levels of ABA of the five groupswere positively related to the degree of water stress, relationshipsbetween ABA concentration and total water () or turgor (p) potentialsvaried considerably with time of sampling. Within groups, changesin ABA contents during the day were not always accounted forby changes in or p. Temporal changes in leaf ABA content similar to those foundin BJ 104, and largely unrelated to , were observed in the genotypesSerere 39 and B282 in a subsequent year. Leaf ABA content of droughted plants (BJ 104) did not declineappreciably overnight despite a marked increase in . However,a large reduction in ABA content with increase in did occurfollowing heavy rainfall. Diurnal changes in stomatal conductance (g1) of BJ 104 couldnot be simply accounted for by temporal changes in total leafABA content, even when allowance was made for effects of irradianceand other environmental variables on g1. It is suggested thatthe sensitivity of stomata to ABA, or accessibility of the hormoneto the stomatal complex, changes during the day.  相似文献   

20.
Measurements of Cl influx in cells of Chara corallinashow that control of this flux contributes to the ability ofthis cell to regulate its osmotic pressure. Transcellular osmosiswas used to generate cell fragments with abnormally high 1,(H-cells), and with abnormally low 1, (L-cells). Plasmalemmainflux (oc) was very high in L-cells, and markedly reduced inH-cells. Influx was not affected by the presence of sucrosein the pond water and the consequent reduction in turgor. InH-cells the chloride flux from cytoplasm to vacuole (cv) wasalso strongly inhibited. It is suggested that control of Clfluxes at both plasmalemma and tonoplast is involved in osmoregulationin these cells. Key words: Chara corallina, osmoregulation, Cl flux  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号