首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary It has previously been shown by Macey and Farmer (Biochim. Biophys. Acta 211:104–106, 1970) that phloretin inhibits urea transport across the human red cell membrane yet has no effect on water transport. Jennings and Solomon (J. Gen. Physiol. 67:381–397, 1976) have shown that there are separate lipid and protein binding sites for phloretin on the red cell membrane. We have now found that urea transport is inhibited by phloretin binding to the lipids with aK 1 of 25±8 m in reason-able agreement with theK D of 54±5 m for lipid binding. These experiments show that lipid/protein interactions can alter the conformational state of the urea transport protein. Phloretin binding to the protein site also modulates red cell urea transport, but the modulation is opposed by the specific stilbene anion transport inhibitor, DIDS (4,4-diisothiocyano-2,2-stilbene disulfonate), suggesting a linkage between the urea transport protein and band 3. Neither the lipid nor the protein phloretin binding site has any significant effect on water transport. Water transport is, however, inhibited by up to 30% in a pH-dependent manner by DIDS binding, which suggests that the DIDS/band 3 complex can modulate water transport.  相似文献   

2.
A detailed kinetic study of the inhibitory effects ofl- andd-enantiomers of cysteate, cysteine sulphinate, homocysteine sulphinate, homocysteate, and S-sulpho-cysteine on the neuronal, astroglial and synaptosomal high-affinity glutamate transport system was undertaken.d-[3H] Aspartate was used as the transport substrate. Kinetic characterisation of uptake in the absence of sulphur compounds confirmed the high-affinity nature of the transport systems, the Michaelis constant (K m) ford-aspartate uptake being 6 M, 21 M and 84 M, respectively, in rat brain cortical synaptosomes and primary cultures of mouse cerebellar granule cells and cortical astrocytes. In those cases where significant effects could be demonstrated, the nature of the inhibition was competitive irrespective of the neuronal versus glial systems. The rank order of inhibition was essentially similar in synaptosomes, neurons and astrocytes. Potent inhibition (K iK m) of transport in each system was exhibited byl-cysteate, andl- andd-cysteine sulphinate whereas substantially weaker inhibitory effects (K i>10–1000 times the appropriateK m value) were exhibited by the remaining sulphur amino acids. In general, inhibition: (i) was markedly stereospecific in favor of thel-enantiomers (except for cysteine sulphinate) and (ii) was found to decrease with increasing chain length. Computer-assisted molecular modelling studies, in which volume contour maps of the sulphur compounds were superimposed on those ofd-aspartate andl-glutamate, demonstrated an order of inhibitory potency which was, qualitatively, in agreement with that obtained quantitatively by in vitro kinetic studies.Special issue dedicated to Dr. Elling Kvamme  相似文献   

3.
Summary The recent demonstration that the human colon adenocarcinoma cell line Caco-2 was susceptible to spontaneous enterocytic differentiation led us to consider the question as to whether Caco-2 cells would exhibit sodium-coupled transport of sugars. This problem was investigated using isotopic tracer flux measurements of the nonmetabolizable sugar analog -methylglucoside (AMG). AMG accumulation in confluent monolayers was inhibited to the same extent by sodium replacement, 200 m phlorizin, 1mm phloretin, and 25mm d-glucose, but was not inhibited further in the presence of both phlorizin and phloretin. Kinetic studies were compatible with the presence of both a simple diffusive process and a single, Na+-dependent, phlorizin-and phloretin-sensitive AMG transport system. These results also ruled out any interaction between AMG and a Na+-independent, phloretin-sensitive, facilitated diffusion pathway. The brush-border membrane localization of the Na+-dependent system was inferred from the observations that its functional differentiation was synchronous with the development of brush-border membrane enzyme activities and that phlorizin and phloretin addition 1 hr after initiating sugar transport produced immediate inhibition of AMG uptake as compared to ouabain. Finally, it was shown that brush-border membrane vesicles isolated from the human fetal colonic mucosa do possess a Na+-dependent transport pathway(s) ford-glucose which was inhibited by AMG and both phlorizin and phloretin. Caco-2 cells thus appear as a valuable cell culture model to study the mechanisms involved in the differentiation and regulation of intestinal transport functions.  相似文献   

4.
The Antarctic bacterial isolate Sphingomonas sp. strain Ant 17 utilized a wide range of L-isomer amino acids as the sole carbon and energy source for growth. The pH and temperature optima for growth on amino acids were pH 7.0 and 15°C, respectively. Growth on serine and tryptophan was inhibited by uncouplers and inhibitors of oxidative phosphorylation, but not by monensin, a Na+/H+ antiporter, suggesting that sodium gradients were not specifically required for growth on these amino acids. Serine transport was via a high-affinity (apparent Km of 8 M) permease specific for both the L- and D-isomer. Tryptophan transport exhibited biphasic kinetics with both high-affinity (apparent Km of 2.5 M) and low-affinity (non-saturable) uptake systems detected. The high-affinity system was specific for L-tryptophan, L-tyrosine, and L-phenylalanine whereas the low-affinity permease was specific for L-tryptophan and L-phenylalanine, but not L-tyrosine. Neither orthovanadate nor sodium arsenate, inhibitors of ATP-dependent permeases, had any significant inhibitory effect on the rate of serine and tryptophan transport. The protonophore carbonyl cyanide m-chlorophenylhydrazone completely abolished serine and tryptophan transport; maximum rates of solute uptake were observed at acidic pH values (pH 4.0–5.0) for both amino acids. These results suggest that an electrochemical potential of protons is the driving force for serine and tryptophan transport by Ant 17. These high-affinity proton-driven permeases function over environmental extremes (e.g. broad temperature and pH range) that are likely to prevail in the natural habitat of this bacterium.  相似文献   

5.
Summary The Na/K/Cl-dependent component of the binding of the loop diuretic bumetanide to basolateral membrane vesicles from the rabbit parotid is studied. A Scatchard analysis indicates that this binding is due to a single high-affinity site withK D =3.2±0.3 m (n=9) at 100mm sodium, 100mm potassium and 5mm chloride. When KCl-dependent22Na transport and tracer [3H]-bumetanide binding are monitored simultaneously as a function of (unlabeled) bumetanide concentration it is found that theK 0.5 for bumetanide inhibition of both processes are identical indicating that the high-affinity bumetanide binding site studied here is identical with a bumetanide-inhibitory site on the Na/K/Cl cotransport system previously identified in this preparation (R.J. Turner, J.N. George and B.J. Baum,J. Membrane Biol. 94:143–152, 1986). High-affinity bumetanide binding exhibits a hyperbolic dependence on both [Na] and [K] consistent with Na/bumetanide and K/bumetanide binding stoichiometries of 11 andK 0.5 values of approximately 33mm for sodium and 23mm for potassium. In contrast, the dependence on [Cl] is biphasic, with bumetanide binding increasing from 0 to 5mm chloride and decreasing toward baseline levels thereafter. Scatchard analysis of this latter inhibitory effect of chloride indicates a competitive interaction with bumetanide in agreement with earlier indications that bumetanide inhibits Na/K/Cl cotransport at a chloride site. However, studies of the effects of various anions on bumetanide binding and22Na transport show a poor correlation between the specificities of these two processes, suggesting that the inhibitory chloride site is not a chloride transport site.  相似文献   

6.
By using d-glucose, d-xylose, d-galactose and d-fructose in the strictly aerobic yeast Rhodotorula glutinis and by comparing the half-saturation constants with inhibition constants the yeast was shown to possess a single common system for d-xylose and d-galactose (K m's and K i's all between 0.5 and 1.1 mM) but another distinct transport system for d-fructose. The transport of d-glucose has a special position in that glucose blocks apparently allotopically all the other systems observed although it uses at least one of them for its own transport. The different character of d-glucose uptake is underlined by its relative independence of pH (its K m is completely pH-insensitive) in contrast with all other sugars. At low concentrations, all sugars show mutual positive cooperativity in uptake, suggesting at least two transport sites plus possibly a modifier site on the carrier.  相似文献   

7.
Summary Transport of the nucleoside analog cytosine-arabinoside (CAR) in transformed hamster cells in culture has been studied in conditions of minimal metabolic conversion. Uptake (zero-trans in) properties at 20°C over a limited range of CAR concentrations were characterized by aK m of 350 m and a maximal velocity (V) of 780 m·min–1 (V/K m =2.28 min–1). Equilibrium exchange at 20°C over a wider range of concentrations was best described by a saturable component with aK m of 500 m and av of 1230 m·min–1 (V/K m =2.26 min–1) and either a saturable component of highK m or a nonsaturable component ofk=0.3 min–1. For the saturable component, thev/K m values were similar in both procedures.CAR transport was inhibited by various metabolizable nucleosides. Uptake of some of these nucleosides was inhibited by CAR. CAR transport and uridine uptake were inhibited in a reversible but partially competitive fashion by high affinity probes like S-(p-nitrobenzyl-6-mercaptoinosine (NBMI) (K i <0.5nm) and in an irreversible fashion by SH reagents such as N-ethylmaleiimide (NEM). The organomercurialp-hydroxymercuribenzene sulfonate (pMBS) markedly stimulated transport of these nucleosides, but also markedly potentiated the inhibitory effects of either NBMI or NEM. These effects are interpreted either in terms of models which invoke allosteric properties or in terms of two transport systems which display distinct chemical susceptibilities to externally added probes.  相似文献   

8.
Summary A kinetic analysis of anion self-exchange in human red blood cells, in the presence of an irreversible inhibitor, is presented and applied to the study of the inactivation of sulfate transport by three isothiocyanates: 3-isothiocyano-1,5-naphthalenedisulfonic acid, disodium salt (INDS), 1-isothiocyano-4-naphthalene sulfonic acid, sodium salt, monohydrate (INS), and 1-isothiocyano-4-benzenesulfonic acid, sodium salt, monohydrate (IBS). The time dependence of the inhibition of sulfate transport by the isothiocyanates used could be described by a single exponential and could be shown to contain a reversible and an irreversible component. In each case a portion of sulfate efflux was found to be resistant to inactivation. The residual portion of the sulfate efflux varied with inhibition: 4% for INS, 16% for INDS, and 34% for IBS. INS showed the largest reversible inhibitory effect (12% of the flux remaining at 0.2mm inhibitor concentration), while INDS showed the weakest effect (92% of the flux remaining at 0.3mm inhibitor concentration). IBS had the highest rate of inactivation while INDS had the lowest. The kinetic analysis further suggests that all three isothiocyanates bind reversibly to an inhibitory site on the membrane before they bind covalently, and therefore irreversibly, to the same site on the membrane. The equilibrium constant for the dissociation of the reversibly-bound complex,K i, and the rate of irreversible inactivation after all membrane sites are reversibly bound,k max, have been computed for all three inhibitors: INDS (K i=420m,k max=5.04 hr–1), INS (K i=148 m,k max=6.48 hr–1), and IBS (K i=208 m,k max=8.11 hr–1).  相似文献   

9.
Analysis in mouse brain slices of the uptake of acetyl-l-[N-methyl-14C]carnitine with time showed it to be concentrative, and kinetic analysis gave aK m of 1.92 mM and aV max of 1.96 mol/min per ml, indicating the presence of a low-affinity carrier system. The uptake was energy-requiring and sodium-dependent, being inhibited in the presence of nitrogen (absence of O2), sodium cyanide, low temperature (4°C), and ouabain, and in the absence of Na+. The uptake of acetyl-l-carnitine was not strictly substrate-specific; -butyrobetaine,l-carnitine,l-DABA, and GABA were potent inhibitors, hypotaurine andl-glutamate were moderate inhibitors, and glycine and -alanine were only weakly inhibitory. In vivo, acetyl-l-carnitine transport across the blood-brain barrier had a brain uptake index of 2.4±0.2, which was similar to that of GABA. These results indicate an affinity of acetyl-l-carnitine to the GABA transport system.  相似文献   

10.
Summary The experiments reported in this paper aim at characterizing the carboxylic acid transport, the interactions of pyruvate and citrate with their transport sites and specificity. The study of these carriers was performed using isotopic solutes for the influx measurements in brush-border membrane vesicles under zerotrans conditions where the membrane potential was abolished with KCl preloading with valinomycin or equilibrium exchange conditions and =0.Under zerotrans condition and =0, the influence of pyruvate concentrations on its initial rates of transport revealed the existence of two families of pyruvate transport sites, one with a high affinity for pyruvate (K t =88 m) and a low affinity for sodium (K t =57.7mm) (site I), the second one with a low affinity for pyruvate (K t =6.1mm) and a high affinity for sodium (K t =23.9mm) (site II). The coupling factor [Na]/[pyruvate] stoichiometry were determined at 0.25mm and 8mm pyruvate and estimated at 1.8 for site I, and 3 when the first and the second sites transport simultaneously.Under chemical equilibrium (0) single isotopic labeling, transport kinetics of pyruvate carrier systems have shown a double interaction of pyruvate with the transporter; the sodium/pyruvate stoichiometry also expressed according to a Hill plot representation wasn=1.7. The direct method of measuring Na+/pyruvate stoichiometry from double labeling kinetics and isotopic exchange, for a time course, gives an=1.67.Studies of transport specificity, indicate that the absence of inhibition of lactate transport by citrate and the existence of competitive inhibition of lactate and citrate transports by pyruvate leads to the conclusion that the low pyruvate affinity site can be attributed to the citrate carrier (tricarboxylate) and the high pyruvate affinity site to the lactate carrier (monocarboxylate).  相似文献   

11.
Summary The Na-dependent transport of a number of organic molecules (d-glucose,l-proline,l-alanine,l-phenylalanine) in brush-border membrane vesicles isolated from the intestine of the eel (Anguilla anguilla) was monitored by recording the fluorescence quenching of the voltage-sensitive cyanine dye 3,3-diethylthiacarbocyanine iodide (DiS-C2(5)). The experimental approach consisted of: a) generating an inside-negative membrane potential mimicking in vivo conditions: b) measuring the rate of membrane potential decay (i.e., the rate of fluorescence quenching decay) due to Na-neutral substrate cotransport. Rates of membrane potential decay showed saturation on substrate concentration andK app values (the substrate concentration giving 50% of the maximal rate) were estimated for Na-dependent transport ofd-glucose (0,099mm),l-alanine (0.516mm),l-proline (0.118mm) andl-phenylalanine (2.04mm). The influence of an inside-negative membrane potential on the affinity of the transporter for glucose and for sodium is discussed.  相似文献   

12.
Summary Phloridzin-insensitive, Na+-independentd-glucose uptake into isolated small intestinal epithelial cells was shown to be only partially inhibited by trypsin treatment (maximum 20%). In contrast, chymotrypsin almost completely abolished hexose transport. Basolateral membrane vesicles prepared from rat small intestine by a Percoll® gradient procedure showed almost identical susceptibility to treatment by these proteolytic enzymes, indicating that the vesicles are predominantly oriented outside-out. These vesicles with a known orientation were employed to investigate the kinetics of transport in both directions across the membrane. Uptake data (i.e. movement into the cell) showed aK t of 48mm and aV max of 1.14 nmol glucose/mg membrane protein/sec. Efflux data (exit from the cell) showed a lowerK t of 23mm and aV max of 0.20 nmol glucose/mg protein/sec.d-glucose uptake into these vesicles was found to be sodium independent and could be inhibited by cytochalasin B. TheK t for cytochalasin B as an inhibitor of glucose transport was 0.11 m and theK D for binding to the carrier was 0.08 m.d-glucose-sensitive binding of cytochalasin B to the membrane preparation was maximized withl- andd-glucose concentrations of 1.25m. Scatchard plots of the binding data indicated that these membranes have a binding site density of 8.3 pmol/mg membrane protein. These results indicate that the Na+-independent glucose transporter in the intestinal basolateral membrane is functionally and chemically asymmetric. There is an outward-facing chymotrypsin-sensitive site, and theK t for efflux from the cell is smaller than that for entry. These characteristics would tend to favor movement of glucose from the cell towards the bloodstream.  相似文献   

13.
Summary The ATP-dependent Ca2+ transport activity (T. Takuma, B.L. Kuyatt and B.J. Baum,Biochem. J. 227:239–245, 1985) exhibited by inverted basolateral membrane vesicles isolated from rat parotid gland was further characterized. The activity was dependent on Mg2+. Phosphate (5mm), but not oxalate (5mm), increased maximum Ca2+ accumulation by 50%. Half-maximal Ca2+ transport was achieved at 70nm Ca2+ in EGTA-buffered medium while maximal activity required >1 m Ca2+ (V max=54 nmol/mg protein/min). Optimal rates of Ca2+ transport were obtained in the presence of KCl, while in a KCl-free medium (mannitol or sucrose) 40% of the total activity was achieved, which could not be stimulated by FCCP. The initial rate of Ca2+ transport could be significantly altered by preimposed membrane potentials generated by K+ gradients in the presence of valinomycin. Compared to the transport rate in the absence of membrane potential, a negative (interior) potential stimulated uptake by 30%, while a positive (interior) potential inhibited uptake. Initial rates of Ca2+ uptake could also be altered by imposing pH gradients, in the absence of KCl. When compared to the initial rate of Ca2+ transport in the absence of a pH gradient, pH i =7.5/pH o =7.5; the activity was 60% higher in the presence of an outwardly directed pH gradient, pH i =7.5/pH o =8.5; while it was 80% lower when an inwardly directed pH gradient was imposed, pH i =7.5/pH o =6.2. The data show that the ATP-dependent Ca2+ transport in BLMV can be modulated by the membrane potential, suggesting therefore that there is a transfer of charge into the vesicle during Ca2+ uptake, which could be compensated by other ion movements.  相似文献   

14.
Summary The fluorescence enhancement of 4,4-dibenzamido-2,2-disulfonic stilbene (DBDS) upon binding to membranes was used to examine proximal tubule stilbene binding sites. Equilibrium binding studies of DBDS to renal brush border (BBMV) and basolateral membrane vesicles (BLMV) were performed using a fluorescence enhancement technique developed for red blood cells (A.S. Verkman, J.A. Dix and A.K. Solomon,J. Gen. Physiol. 81:421–449, 1983). In the absence of transportable anions, DBDS bound reversibly to a single class of sites on BLMV isolated from rabbit (K d =3.8 m) and rat (3.2 m); 100 m dihydro-4,4-diisothiocyano-2,2-disulfonic stilbene (H2DIDS) blocked >95% of binding. H2DIDS inhibitable DBDS binding was not detected using rat or rabbit BBMV. In rabbit BLMV, DBDSK d doubled with 10mm SO4, 50mm HCO3 and 100mm Cl, but was not altered by Na or pH (6–8). In stopped-flow experiments the exponential time constant for DBDS binding slowed with SO4, HCO3 and Cl, but was unaffected by Na. These results are consistent with competitive binding of DBDS and anions at an anion transport site. To relate DBDS binding data to anion transport inhibition we used35SO4 uptake to characterize several modes of rabbit BLM anion transport: H/SO4 and Na/SO4 cotransport, and Cl/SO4 countertransport. Each transport process was electroneutral and was inhibited by H2DIDS, furosemide, probenecid, chlorothiazide and DBDS. The apparentK t 's for DBDS (3–20 m) were similar toK d for DBDS binding. These studies define a class of anion transport sites on the proximal tubule basolateral membrane measureable optically by a fluorescent stilbene.  相似文献   

15.
Summary Brush border membrane vesicles (BBMV) purified from steer jejunum were used to study the kinetics of sodiumd-glucose cotransport under voltage clamped, zero-trans conditions. When the initial rate of glucose transport (J gluc) was measured over a wide range of glucose concentrations ([S]=0.01–20mm), curvature of the Woolf-Augustinsson-Hofstee plots was seen, compatible with a diffusional and one major, high capacity (maximal transport rateJ max=5.8–8.8 nmol/mg·min) saturable system. Further studies indicated that changes incis [Na] altered theK t , but not theJ max, suggesting the presence of a rapid-equilibrium, ordered bireactant system with sodium adding first.Trans sodium inhibitedJ gluc hyperbolically. KCl-valinomycin diffusion potentials, inner membrane face positive, loweredJ gluc, while potentials of the opposite polarity raiseJ gluc. At low glucose concentrations ([S]<0.05mm), a second, minor, high affinity transport system was indicated. Further evidence for this second saturable system was provided by sodium activation curves, which were hyperbolic when [S]=0.5mm, but were sigmoidal when [S]=.0.01mm. Simultaneous fluxes of22Na and [3H]glucose at 1mm glucose and 30mm NaCl yielded a cotransport-dependent flux ratio of 21 sodium/glucose, suggestive of 11 (Na/glucose) high capacity, low affinity system and a 31 (Na/glucose) high affinity, low capacity system. Kinetic experiments with rabbit jejunal brush borders revealed two major Na-dependent saturable systems. Extravesicular (cis) Na changed theK t , but not theJ max of the major system.  相似文献   

16.
Summary Glucose transport was studied in marine mussels of the genusMytilus. Initial observations, with intact animals and isolated gills, indicated that net uptake of glucose occurred in mussels by a carrier-mediated, Na+-sensitive process. Subsequent studies included use of brush-border membrane vesicles (BBMV) in order to characterize this transport in greater detail. The highest activity of Na+-dependent glucose transport was found in the brush-border membrane fractions used in this study, while basal-lateral membrane fractions contained the highest specific binding of ouabain. Glucose uptake into BBMV showed specificity for Na+, and concentrative glucose transport was observed in the presence of an inwardly directed Na+ gradient. There was a single saturable pathway for glucose uptake, with an apparentK t of 3 m in BBMV and 9 m in intact gills. The kinetics of Na+ activation of glucose uptake were sigmoidal, with apparent Hill coefficients of 1.5 in BBMV and 1.2 in isolated gills, indicating that more than one Na+ may be involved in the transport of each glucose. Harmaline inhibited glucose transport in mussel BBMV with aK i of 44 m. The uptake of glucose was electrogenic and stimulated by an inside-negative membrane potential. The substrate specificity in intact gills and BBMV resembled that of Na+-glucose cotransporters in other systems;d-glucose and -methyl glucopyranoside were the most effective inhibitors of Na+-glucose transport,d-galactose was intermediate in its inhibition, and there was little or no effect ofl-glucose,d-fructose, 2-deoxy-glucose, or 3-O-methyl glucose. Phlorizin was an effective inhibitor of Na+-glucose uptake, with an apparentK i of 154nm in BBMV and 21nm in intact gills. While the qualitative characteristics of glucose transport in the mussel gill were similar to those in other epithelia, the quantitative characteristics of this process reflect adaptation to the seawater environment of this animal.  相似文献   

17.
Summary Suspensions of log phase cells ofRhodospirillum rubrum at pH 5.5 show a light-induced decrease in the pH of the medium which is reversed during the subsequent dark period. The velocity and magnitude of the pH change were the same whether the cells were bubbled with air, CO2-free air or N2 during experimentation. The pH response is temperature dependent. Phenazine methyl sulfate (PMS) at concentrations above 0.05mm stimulates the light-induced pH change. PMS at 1mm gives a 2-fold increase in the initial rate upon illumination and a 1.5-fold increase in the total change in pH after 2 min of illumination. The inhibition of the proton transport by 10 g/ml antimycin A or 20 m 2-n-heptyl-4-hydroxyquinoline-N-oxide can be partially relieved by PMS. However, inhibition of the light-induced proton transport with 0.5mm 2,4-dinitrophenol or 3 m carbonylcyanide-m-chlorophenylhydrazone (CCCP) cannot be overcome by addition of PMS. Valinomycin, at a concentration of 3 m, caused a slight stimulation of the light-induced proton transport in the presence of 200mm KCl. The inhibition of proton transport by 3 m CCCP was partially relieved with 3 m valinomycin in the presence of 200mm KCl, but the antibiotic was without effect when the cells were suspended in 200mm NaCl. The results are discussed in terms of current theories of the action of PMS, antimycin A, valinomycin, and uncouplers on the light-induced electron flow and photophosphorylation inR. rubrum.  相似文献   

18.
Summary Models for active Cl transport across epithelia are often assumed to be universal although they are based on detailed studies of a relatively small number of epithelia from vertebrate animals. Epithelial Cl transport is also important in many invertebrates, but little is known regarding its cellular mechanisms. We used short-circuit current, tracer fluxes and ion substitutions to investigate the basic properties of Cl absorption by locust hindgut, an epithelium which is ideally suited for transport studies. Serosal addition of 1mm adenosine 35-cyclic monophosphate (cAMP), a known stimulant of Cl transport in this tissue, increased short-circuit current (I sc) and net reabsorptive36Cl flux (J net Cl ) by 1000%. Cl absorption did not exhibit an exchange diffusion component and was highly selective over all anions tested except Br. Several predictions of Na- and HCO3-coupled models for Cl transport were tested: Cl-dependentI sc was not affected by sodium removal (<0.05mm) during the first 75 min. Also, a large stimulation ofJ net Cl was elicited by cAMP when recta were bathed for 6 hr in nominally Na-free saline (<0.001 to 0.2mm) and there was no correlation between Cl transport rate and the presence of micromolar quantities of Na contamination. Increased unidirectional influx of36Cl into rectal tissue during cAMP-stimulation was not accompanied by a comparable uptake of22Na.J net Cl was independent of exogenous CO2 and HCO3, but was strongly dependent on the presence of K. These results suggest that the major fraction of Cl transport across this insect epithelium occurs by an unusual K-dependent mechanism that does not directly require Na or HCO3.  相似文献   

19.
Summary Membrane vesicles obtained from the basal lateral membranes of the rat intestinal epithelium were used to study the pathways for neutral amino acid transport.In the absence of sodium there was a stereospecific uptake ofl-alanine which exhibited saturation kinetics (K m 0.73mm andV max 5.3 nmol/mg min at 22°C). The activation energy for this process was 8.1 kcal/mole between 5 and 25°C. Preloading the vesicles with alanine increased the unidirectional influx of alanine into the vesicle. Competition experiments indicated that the affinity of the sodium-independent transport system was glutamine > threonine > alanine > phenylalanine > valine > methionine > glycine > histidine > proline, N-MeAIB. These are the characteristics of the classical L transport system.External sodium increased the rate of the stereospecificl-alanine uptake. The Na-dependent flux had aK m of 0.04mm and aV max of 0.26 nmol/mg min at 22°, and an activation energy of 9.1 kcal/mole between 5 and 25°C. Competition experiments suggest the existence of three separate pathways for alanine transport in the presence of sodium. A major pathway is shared by all other amino acids tested (i.e., threonine, glutamine, methionine, phenylalanine, valine, proline and N-MeAIB). This resembles the classical A system. A second pathway is unavailable to either phenylalanine or N-MeAIB; this is reminiscent of the classical ASC system; and the third is a novel pathway which is shared by N-MeAIB but not phenylalanine.The sodium-independent and the sodium-dependent transport ofl-alanine was blocked by PCMBS and significantly inhibited by DTP and NEM. It is concluded that the sodium-independent system (the L-like system) accounts for the efflux of neutral amino acids from the epithelium to the blood during the absorption of amino acids from the gut, and that the sodium-dependent transport processes may play an important role in the supply of amino acids to the epithelium in the absence of amino acids from the gut lumen.  相似文献   

20.
Summary The effects of furosemide on the chloride-dependent short-circuit current across the toad ciliary epithelium were examined. Under control conditions, the short-circuit current obeyed Michaelis-Menten kinetics against medium chloride concentration, the Michaelis constant (K m ) for chloride being 90mm and the maximal short-circuit current (V max) 128 A/cm2. Furosemide added to the aqueous side of the epithelium rapidly reduced the short-circuit current; the effect was reversible. The effect of furosemide addition to the stromal side was much smaller and slower than that from the aqueous side. The dose-dependent range of furosemide action was from 0.1 m to 1mm with 50% inhibition occurring at about 3 m. Line-weaver-Burk plot of the short-circuit current against the chloride concentration showed that furosemide decreased the value ofV max and increased theK m ; the inhibition being of mixed type. A Hill plot of the dose-response curve yielding a slope of unity suggested one furosemide molecule combines with one chloride transport site. Probenecid, a competitive inhibitor of organic acid transport, reduced the effects of furosemide significantly when added simultaneously. The involvement of organic acid transport system in the mechanism of furosemide action on chloride transport was suggested.Department of Ophthalmology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号