首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments have been carried out to test the proposal that the pH increase at fertilization in sea urchin eggs promotes microvillar elongation. Results presented herein show that microvillar elongation and microfilament formation occurred when sea urchin eggs were incubated in sodium-free seawater containing the calcium ionophore A23187, a treatment which initiates activation, i.e., induces a transient increase in intracellular free calcium, but prevents subsequent cytoplasmic alkalinization. Within elongated microvilli and cortices of these eggs, microfilaments were arranged in a loose meshwork. However, if the pH of the egg cytoplasm was increased experimentally, microfilament bundles appeared within individual microvilli. These findings suggest that: (1) microvillar elongation and microfilament formation in the sea urchin egg at fertilization may occur when cytoplasmic alkalinization is inhibited, and (2) formation of the microvillus bundle of microfilaments at egg activation is pH sensitive. Additionally, if the cytoplasmic pH of unfertilized eggs was experimentally elevated by NH4Cl, microvilli failed to elongate. These data indicate that elevation of intracellular pH by this method is not sufficient to induce microvillar elongation.  相似文献   

2.
Parthenogenetic activation of unfertilized sea urchin eggs with ammonium chloride at pH 8.0 resulted in a slow, but dramatic, reorganization of surface microvilli in four species of sea urchin eggs. Following NH4Cl treatment, elongation of microvilli on the egg surface was observed concomitant with the formation of microfilament bundles within the microvillar cores. A minimum of 2 h of treatment was required for elongation and microfilament bundle formation to occur. The maintenance of elongated microvilli was pH-sensitive; removal of the activating agent resulted in the retraction of extended microvilli while readdition of NH4Cl caused microvilli to elongate again. Accompanying microvillar elongation in activated eggs, there was an increased calcium uptake as measured by 45Ca uptake. Blocking calcium uptake by incubation in lanthanum chloride or zero-calcium seawater containing 2 mM EGTA prevented microvillar elongation. These results suggested that elongation of microvilli following parthenogenetic activation by NH4Cl is pH- and calcium-dependent and is similar to that observed during normal fertilization.  相似文献   

3.
Changes in the topography of the sea urchin egg after fertilization   总被引:9,自引:8,他引:1       下载免费PDF全文
Changes in the topography of the sea urchin egg after fertilization were studied by scanning and transmission electron microscopy. Strongylocentrotus purpuratus eggs were treated with dithiothreitol to modify the vitelline layer and to prevent formation of a fertilization membrane. Dithiothreitol treatment caused the microvilli to become more irregular in shape, length, and diameter than those of untreated eggs. The microvilli were similarly modified by trypsin treatment. This effect did not appear to be due to disruption of cytoskeletal elements beneath the plasma membrane, for neither colchicine nor cytochalasin B altered microvillar morphology. Thus, it appears that the vitelline layer may act in the maintenance of surface form of unfertilized eggs. Since dithiothreitol-treated eggs did not elevate a fertilization membrane, scanning electron microscopy could be used to directly observe modifications in the egg plasma membrane after fertilization. The wave of cortical granule exocytosis initiated at the point of attachment of the fertilizing sperm was characterized by the appearance of pits that subsequently opened, releasing the cortical granule contents and leaving depressions upon the egg surface. The perigranular membranes inserted during exocytosis were seen as smooth patches between the microvillous patches remaining from the original egg surface. This produced a mosaic surface with more than double the amount of membrane of unfertilized eggs. The mosaic surface subsequently reorganized to accommodate the inserted membrane material by elongation of microvilli. Blebs and membranous whorls present before reorganization suggested the existence of an unstable intermediate state of plasma membrane reorganization. Exocytosis and mosaic membrane formation were not blocked by colchicine or cytochalasin B, but microvillar elongation was blocked by cytochalasin B treatment.  相似文献   

4.
We report on the internal ultrastructure of long, finger-like microvilli which cover the surface of the fertilized sea urchin egg. Eggs were attached to polylysine-coated surfaces; their upper portions were sheared away with a stream of buffer which left behind only their plasma membranes and adjacent cytoplasmic structures. Scanning electron microscopy (EM) of such fragments revealed intact thin protoplasmic projections radiating away from the body of the cortex. By transmission EM of cortices similarly prepared on grids, small bundles of microfilaments appear as cores within the thin cytoplasmic projections. These microfilaments are shown to be composed of actin by their ability to interact with muscle heavy meromyosin (HMM). HMM-decorated microfilaments possess repeating arrowheads which uniformly point toward the cell interior. Actin bundles in the microvilli of sea urchin eggs may mediate microvillus support and elongation.  相似文献   

5.
In the eggs of a wide range of animal species, various factors that determine the blastomeres' presumptive fate are known to locate unevenly within the egg. In the embryos of these animals, cleavage occurs not just to increase cell numbers, but also to distribute the factors to the respective blastomeres, resulting in cell specialization at the later stages. In the early cleavage stages, before the establishment of a device such as desmosomes to directly join the blastomeres, some other means is needed to keep the blastomeres together and maintain the relative positions among them. In this study, we found that the embryos of the starfish Astropecten scoparius lack the hyaline layer seen in sea urchin embryos and that blastomeres adhere to the fertilization envelope (FE) via filamentous cellular projections (fixing processes). Electron microscopy revealed the fixing processes to be specialized microvilli formed, after the elevation of the FE, by the elongation of short microvilli that pre-exist in unfertilized eggs. After the first cleavage, the two blastomeres separate from each other and finally attach to the FE. In the subsequent cleavages, the blastomeres undergo repeated cell division without separating from the FE. Between the blastomeres and the FE, only shortened fixing processes were observed. Destruction of the fixing processes caused release of the blastomeres from the FE and disturbance of the relative positions of the blastomeres, resulting in abnormal development of the embryos. These observations suggest that the fixing process is a device to keep the egg placed centrally in the FE up to the first cleavage, and after the first cleavage and beyond to anchor the blastomeres to the FE so that the FE can be used as a scaffold for morphogenesis. Electron microscopy also suggests that the inner layer of the FE, which is derived from the contents of cortical granules, reinforces the adhesion of the fixing processes to the FE. Immuno-electron microscopy, using an antibody against sea urchin hyaline layer, showed that the inner layer of the FE of starfish eggs and the hyaline layer of sea urchin eggs, which are both derived from cortical granules, contain some common elements.  相似文献   

6.
Four early events of egg fertilization, changes in intracellular calcium concentration and intracellular pH, reorientation of the surface membrane, and the elevation of the fertilization envelope, were imaged in real time and in pairs in single sea urchin eggs. The paired imaging allowed the correlation of the four events spatially and temporally. Three of them propagated as waves starting at the sperm entry site. The earliest was the calcium wave, visualized with fluorescent indicator dyes. After a delay of 10 s there followed a large decrease in the fluorescence polarization of membrane-bound dyes, which we interpret as arising from membrane reorientation as a result of cortical granule exocytosis and microvillar elongation. With a further delay of 15 s the fertilization envelope was seen to rise in transmitted light. All three waves propagated with similar velocities of approximately 10 microns/s, supporting the view that calcium triggers the latter two events. The fluorescence polarization changed in two steps with a clear pause of 10-20 s in between. The second step, which also propagated as wave, reflects either further elongation of microvilli or straightening of irregular microvilli. This second step was abolished by cytochalasin B and was coincident with an increase in cytoplasmic pH, suggesting that pH-induced actin reorganization may play a role. The cytoplasmic alkalinization, imaged with a fluorescent probe, was quite different from the other events in that it took place homogeneously throughout the egg and slowly (over 100 s). Apparently, the alkalinization is not on a direct downstream pathway of calcium origin. An opposing possibility, that the alkalinization may in fact be triggered by the traveling calcium wave, is also discussed.  相似文献   

7.
Sources of calcium in egg activation: a review and hypothesis   总被引:21,自引:0,他引:21  
A careful reanalysis of the literature indicates that the initial mechanism of activation in sea urchin eggs is remarkably similar to the mechanism established in medaka eggs: i.e., sea urchin eggs are activated by a qualitatively and quantitatively similar calcium explosion; one which is propagated in a wave sustained by the calcium-stimulated release of calcium from internal sources. These sources are probably in the endoplasmic reticulum. An exhaustive survey of the literature reveals that a wide variety of other activating eggs in the vertebrate line also exhibit secretory waves which are propagated at about 10 microns/sec, and can thus be assumed to reflect the same basic mechanism. Activating protostome eggs on the other hand do not exhibit such waves. This and other systematic differences from deuterostomes suggest that unlike deuterostome eggs, protostome eggs are primarily activated by calcium ions which enter the cytosol from the medium, and do so in response to depolarization of the egg's plasma membrane.  相似文献   

8.
Localization of tropomyosin in sea urchin eggs was investigated immunohistochemically. A rabbit antiserum against tropomyosin prepared from lantern muscle of the sea urchin was used for the indirect immunofluorescence staining of unfertilized and fertilized eggs. The tropomyosin-specific fluorescence was observed at the peripheral region beneath the plasma membrane, mitotic apparatus and contractile ring. The mitotic apparatus isolated from sea urchin eggs was also stained with the anti-tropomyosin serum.  相似文献   

9.
Calyculin A, a potent inhibitor of type 1 and type 2A protein phosphatases, induces contractile ring formation when applied to unfertilized sea urchin eggs [Tosuji et al., 1992: Proc. Natl. Acad. Sci. USA 89:10613-10617]. We report here the elongation of microvilli in the unfertilized eggs exposed to calyculin A. The elongated microvilli and associated sperm-egg binding sites (egg receptor for sperm) then became concentrated into a constriction site corresponding to the cleavage furrow. The egg receptor for sperm was also in close connection to the microfilaments. Okadaic acid is another known inhibitor of protein phosphatase type-1 and type-2A. Its effect, however, is about a hundredfold feebler for type-1 phosphatase than type-2A. Even after treatment with okadaic acid, no change was observed, suggesting that these morphological changes were induced by calyculin A solely though its inhibitory effect on the type-1 protein phosphatase.  相似文献   

10.
Exocytosis of cortical granules was observed in sea urchin eggs, either quick-frozen or chemically fixed after exposure to sperm. Fertilization produced a wave of exocytosis that began within 20 s and swept across the egg surface in the following 30 s. The front of this wave was marked by fusion of single granules at well-separated sites. Toward the rear of the wave, granule fusion became so abundant that the egg surface left with confluent patches of granule membrane. The resulting redundancy of the egg surface was accommodated by elaboration of characteristic branching microvilli, and by an intense burst of coated vesicle formation at approximately 2 min after insemination. Freeze-fracture replicas of eggs fixed with glutaraldehyde and soaked in glycerol before freezing displayed forms of granule membrane interaction with the plasma membrane which looked like what other investigators have considered to be intermediates in exocytosis. These were small disks of membrane contact or membrane fusion, which often occurred in multiple sites on one granule and also between adjacent granules. However, such membrane interactions were never found in eggs that were quick-frozen fixation, or in eggs fixed and frozen without exposure to glycerol. Glycerination of fixed material appeared to be the important variable; more concentrated glycerol produced a greater abundance of such "intermediates." Thus, these structures may be artifacts produced by dehydrating chemically fixed membranes, and may not be directly relevant to the mechanism by which membranes naturally fuse.  相似文献   

11.
Calcium loss and muscle atrophy are two of the main metabolic changes experienced by astronauts and crew members during exposure to microgravity in space. Calcium and cytoskeletal events were investigated within sea urchin embryos which were cultured in space under both microgravity and 1 g conditions. Embryos were fixed at time-points ranging from 3 h to 8 days after fertilization. Investigative emphasis was placed upon: (1) sperm-induced calcium-dependent exocytosis and cortical granule secretion, (2) membrane fusion of cortical granule and plasma membranes; (3) microfilament polymerization and microvilli elongation; and (5) embryonic development into morula, blastula, gastrula, and pluteus stages. For embryos cultured under microgravity conditions, the processes of cortical granule discharge, fusion of cortical granule membranes with the plasma membrane, elongation of microvilli and elevation of the fertilization coat were reduced in comparison with embryos cultured at 1 g in space and under normal conditions on Earth. Also, 4% of all cells undergoing division in microgravity showed abnormalities in the centrosome-centriole complex. These abnormalities were not observed within the 1 g flight and ground control specimens, indicating that significant alterations in sea urchin development processes occur under microgravity conditions.  相似文献   

12.
The process of secretory granule-plasma membrane fusion can be studied in sea urchin eggs. Micromolar calcium concentrations are all that is required to bring about exocytosisin vitro. I discuss recent experiments with sea urchin eggs that concentrate on the biophysical aspects of granule-membrane fusion. The backbone of biological membranes is the lipid bilayer. Sea urchin egg membrane lipids have negatively charged head groups that give rise to an electrical potential at the bilayer-water interface. We have found that this surface potential can affect the calcium required for exocytosis. Effects on the surface potential may also explain why drugs like trifluoperazine and tetracaine inhibit exocytosis: they absorb to the bilayer and reduce the surface potential. The membrane lipids may also be crucial to the formation of the exocytotic pore through which the secretory granule contents are released. We have measured calcium-induced production of the lipid, diacylglycerol. This lipid can induce a phase transition that will promote fusion of apposed lipid bilayers. The process of exocytosis involves the secretory granule core as well as the lipids of the membrane. The osmotic properties of the granule contents lead to swelling of the granule during exocytosis. Swelling promotes the dispersal of the contents as they are extruded through the exocytotic pore. The movements of water and ions during exocytosis may also stabilize the transient fusion intermediate and consolidate the exocytotic pore as fusion occurs.  相似文献   

13.
A burst of endocytosis accompanying microvillar elongation follows cortical granule exocytosis in normal sea urchin development. By 5 min postfertilization the burst is over and a lower level of endocytosis ensues (constitutive phase). To determine whether microvillar elongation and initiation of endocytosis are necessary concommitants of cortical granule exocytosis we utilized Chase's (1967, Ph.D. thesis, University of Washington, Seattle) high-hydrostatic pressure technique to block the latter and then examined developing eggs for endocytosis and microvillar elongation. To accomplish this, eggs were fertilized, after which hydrostatic pressure was quickly raised to 6000-7000 psi at the start of cortical granule exocytosis and maintained for 5 min. Only the cortical granules immediately surrounding the sperm penetration site were secreted (about 3% or less of the egg's total number of cortical granules). Blockage of major cortical granule exocytosis had the following consequences on surface events during first division: (1) The endocytosis burst normally associated with cortical granule exocytosis was effectively eliminated as was early microvillar elongation and elevation. Both occurred to a limited extent around the sperm penetration site which resulted in a highly localized surface transformation. (2) By 20 min after fertilization endocytosis began over the rest of the egg surface in the absence of any further cortical granule exocytosis. (3) Subsequently, during a 30-min period starting midway between fertilization and first cleavage microvilli more than doubled in length and endocytosis levels increased severalfold. These events brought about a complete surface transformation similar to that which normally occurs in early development but in the absence of cortical granule exocytosis. By first cleavage surfaces and cortices of high-pressure-treated and control eggs were nearly indistinguishable except for the presence of cortical granules in cortices of the former. Pressure-treated eggs cleaved normally and developed to larval forms overnight. The period of late surface transformation in high-pressure-treated Strongylocentrotus purpuratus eggs corresponds in timing and some of its characteristics to second phase microvillar elongation observed in normal development in this species and also in S. droebachiensis development. These observations suggest, therefore, that microvillar elongation and endocytosis are necessary membrane remodelling events which must occur for normal development even in the absence of membrane addition from the cortical granules.  相似文献   

14.
Interphylum crossing was examined between sea urchin eggs (Temnopleurus hardwicki) and oyster sperm (Crassostrea gigas). The eggs could receive the spermatozoa with or without cortical change. The fertilized eggs that elevated the fertilization envelope began their embryogenesis. Electron microscopy revealed that oyster spermatozoa underwent acrosome reaction on the sea urchin vitelline coat, and their acrosomal membrane fused with the egg plasma membrane after the appearance of an intricate membranous structure in the boundary between the acrosomal process and the egg cytoplasm. Oyster spermatozoa penetrated sometimes into sea urchin eggs without stimulating cortical granule discharge and consequently without fertilization envelope formation. The organelles derived from oyster spermatozoa seemed to be functionally inactive in the eggs whose cortex remained unchanged.  相似文献   

15.
The change in intracellular pH (pHi) upon fertilization and the effects of changing the pHi by microinjection of pH buffers were investigated in the eggs of the sand dollar, Clypeaster japonicus. The pHi was determined by the tint of a pH indicator, phenol red, microinjected into eggs. The pHi ranged from 6.5 to 6.75 in unfertilized eggs and it rose by 0.4 to 0.5 unit within 3 min upon fertilization. The elevated pHi ranging from 7.0 to 7.25 was maintained at least until the first cleavage. As reported in eggs of other species of sea urchin (1–4), development of fertilized eggs which had been transferred to Na-free sea water immediately after insemination was arrested and the pHi did not rise remaining at the level of unfertilized eggs. Development was initiated in eggs arrested in Na-free sea water when the pHi was elevated up to the level of fertilized eggs, i.e. 7.0 to 7.25, by microinjecting 1 M HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid)-KOH buffer at pH 8.0. By microinjection of pH 7.5 buffer, some eggs started development though none of them underwent cleavage. By microinjection of pH 7.0 or pH 6.5 buffer, development was not initiated. The initiation of development depended on the pH value of microinjected pH buffer, and in consequence, on the final pHi. The elongation of microvilli which had been arrested in eggs in Na-free sea water was also induced by microinjection of pH 8.0 or 7.5 buffer.  相似文献   

16.
Summary Elongated microvilli attach the early sea urchin embryo to the fertilization envelope and support it in a concentric position within the perivitelline space. The contractility of the elongated microvilli was demonstrated in several ways. (1) During normal cleavage, these microvilli change their length to adapt to the change in shape and numbers of blastomeres. (2) When treated with calcium-free sea water, embryos become eccentrically located and the microvilli extend further than normal on one side; when returned to normal sea water, the embryos become centered again. (3) Several agents cause the fertilization envelope to become higher and thinner than normal and the elongated microvilli to extend correspondingly if treated within ten min after fertilization. In some cases, both elongated microvilli and fertilization envelope return to normal size when returned to normal sea water. (4) Fertilization in a papain solution causes the elongated microvilli and the fertilization envelope to contract to the surface of the embryo. (5) Refertilization after the papain-induced contraction can bring about the elongation of these microvilli and the elevation of the fertilization envelope a second time. It was also shown that elongated microvilli are extended immediately upon fertilization, at the same time as the short microvilli. The firm adherence of the tips of elongated microvilli to the fertilization envelope by means of extracellular matrix fibers is shown in a high voltage electron microscope stereoimage. This allows us to understand why it is that when the elongated microvilli extend or contract, the fertilization envelope also extends and contracts accordingly.  相似文献   

17.
Subnuclear localization of DNA polymerase alpha was studied in sea urchin embryos. Blastula nuclei treated with EDTA and potassium phosphate released subnuclear components bearing most of the nuclear DNA polymerase alpha. These components were suggested to be a part of nuclear membrane based on their buoyant densities (1.177 and 1.136 g/cm3) in isopyknic centrifugation and the nuclear pore-like structure. Contamination with DNA and endoplasmic reticulum membrane to the subnuclear components was shown to be negligible. These results suggested that DNA polymerase alpha associates with nuclear membrane of sea urchin embryos. Nuclear membrane deprived of DNA polymerase alpha was able to associate with nuclear DNA polymerase alpha from blastulae and the cytoplasmic enzyme of unfertilized eggs efficiently, but not with the cytoplasmic enzyme of gastrulae. This result suggests that the nuclear membrane is originates from the endoplasmic reticulum with which DNA polymerase alpha associates in unfertilized eggs.  相似文献   

18.
The sea urchin provides a relatively simple and tractable system for analyzing the early stages of embryo development. Here, we use the sea urchin species, Paracentrotus lividus, to investigate the role of Alix in key stages of embryogenesis, namely the egg fertilization and the first cleavage division. Alix is a multifunctional protein involved in different cellular processes including endocytic membrane trafficking, filamentous (F)‐actin remodeling, and cytokinesis. Alix homologues have been identified in different metazoans; in these organisms, Alix is involved in oogenesis and in determination/differentiation events during embryo development. Herein, we describe the identification of the sea urchin homologue of Alix, PlAlix. The deduced amino acid sequence shows that Alix is highly conserved in sea urchins. Accordingly, we detect the PlAlix protein cross‐reacting with monoclonal Alix antibodies in extracts from P. lividus, at different developmental stages. Focusing on the role of PlAlix during early embryogenesis we found that PlAlix is a maternal protein that is expressed at increasingly higher levels from fertilization to the 2‐cell stage embryo. In sea urchin eggs, PlAlix localizes throughout the cytoplasm with a punctuated pattern and, soon after fertilization, accumulates in larger puncta in the cytosol, and in microvilli‐like protrusions. Together our data show that PlAlix is structurally conserved from sea urchin to mammals and may open new lines of inquiry into the role of Alix during the early stages of embryo development.  相似文献   

19.
Sea urchin eggs secrete a serine protease activity, CGSP1, at fertilization that is essential for the block to polyspermy. Several targets of this proteolytic activity on the plasma membrane were identified here using a cell surface biotinylation approach. Amino acid microsequencing of one of these proteins led to the identification of a 4.75-kb cDNA clone from a Strongylocentrotus purpuratus ovary cDNA library that encodes a 160-kDa protein called p160. This protein contains five CUB domains and a putative transmembrane domain suggesting that p160 is an integral membrane protein with protein-protein interaction motifs facing the extracellular matrix of the egg. Whole-mount immunolocalization studies demonstrate that p160 is on the surface of the egg, enriched at the tips of microvilli. The protein is removed at fertilization in a protease-dependent manner, and functional assays suggest that p160 serves to link the plasma membrane to the vitelline layer until fertilization. Thus, p160 is a key candidate for a vitelline-layer linker protein, the selective proteolysis of which functions in the block to polyspermy in the sea urchin egg.  相似文献   

20.
Binding of insulin to sea urchin egg plasma membrane has been studied by biochemical and immunocytochemical methods. Unfertilized and fertilized eggs as well as embryos during the first cell division have been used. 1. Competition experiments between 125I-insulin (1 nM) and an excess of native insulin (30 muM) indicate a specific hormone fixation to membrane crude extracts from unfertilized and fertilized eggs. The magnitude of "specific binding" is comparable to values recorded for mammalian cells. 2. Inhibition of insulin fixation by concanavalin A (100 mug/ml) suggests the glycoprotein composition of plasma membrane receptors. 3. An 30-min incubation of unfertilized and fertilized eggs in the presence of insulin leads to a significant increase in cyclic AMP content. 4. An immunocytochemical method demonstrates that insulin is selectively and specifically bound to the plasma membrane of eggs incubated in the presence of insulin before fixation. It can be concluded that insulin receptor sites are components of sea urchin eggs plasma membrane. Insulin binding which leads to cyclic AMP accumulation is not deeply modified by fertilization and does not include visible morphological changes in the eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号