首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Trehalose synthase (TSII) from Corynebacterium nitrilophilus NRC was successively purified by ammonium sulphate precipitation, ion exchange chromatography on DEAE-cellulose and gel filtration chromatography on Sephadex G-100 columns. The specific activity of the trehalose synthase was increased ~200-fold, from 0.14 U mg−1 protein to 28.3 U mg−1 protein. TSII was found to be a monomeric protein with a molecular weight of 67–69 kDa. Characterization of the enzyme exhibited optimum pH and temperature were 7.5 and 35°C, respectively. The purified enzyme was stable from pH 6.6 to 7.8 and able to prolong its thermal stability up to 35°C. The enzyme activity was inhibited strongly by Zn2+, Hg2+ and Cu2+ and moderately by Ba2+, Fe2+, Pb2+ and Ni2+. Other metal ions Ca2+, Mg2+, Co2+, Mn2+ and EDTA had almost no effect.  相似文献   

2.
Pectate lyase A (PelA) of Aspergillus nidulans was successfully expressed in Escherichia coli and effectively purified using a Ni2+-nitrilotriacetate-agarose column. Enzyme activity of the recombinant PelA could reach 360 U ml−1 medium. The expressed PelA exhibited its optimum level of activity over the range of pH 7.5–10 at 50°C. Mn2+, Ca2+, Fe2+, Mg2+ and Fe3+ ions stimulated the pectate lyase activity, but Cu2+ and Zn2+ inhibited it. The recombinant PelA had a V max of 77 μmol min−1 mg−1 and an apparent K m of 0.50 mg ml−1 for polygalacturonic acid. Low-esterified pectin was the optimum substrate for the PelA, whereas higher-esterified pectin was hardly cleaved by it. PelA efficiently macerated mung bean hypocotyls and potato tuber tissues into single cells.  相似文献   

3.
Liu J  Zhang X  Zhou S  Tao P  Liu J 《Current microbiology》2007,54(2):102-107
Chlamydophila pneumoniae AR39 is an obligate intracellular pathogen that causes human acute and chronic respiratory tract diseases. One protein from C. pneumoniae AR39 was assigned as 4-hydroxybenzoate decarboxylase (HBDC). Assays done with the purified oxygen-sensitive protein showed that the optimum pH and temperature were 7.5 and 30°C, respectively. The Km and Vmax obtained for 4-hydroxybenzoate were approximately 0.21 mM and 11.9 nM min−1 mg−1, respectively. During the period of 4-hydroxybenzoate decarboxylation, overall activity of the thermal-sensitive protein was 5.06 nM min−1 mg−1 protein. The 4-hydroxybenzoate decarboxylation was promoted by Mg2+, Fe2+, Mn2+, and Ca2+ but not by Cu2+ or Zn2+. The enzyme also slowly catalyzed the reverse reaction, which was phenol carboxylation.  相似文献   

4.
A ferric reductase was purified into an electrophoretically homologous state from Magnetospirillum gryphiswaldense MSR-1 strain. The enzyme was found within the cytoplasm and associated with the cytoplasmic membrane. The molecular weight of the purified enzyme was calculated as 16.1 kDa using sodium dodecyl sulfate–polyacrylamide gel electrophoresis, and was almost identical to that calibrated using agarose gel filtration chromatography. It was NADH-dependent and required flavin mononucleotide as a cofactor. The optimal reaction temperature and pH values were 30°C and 6.5, respectively. The K m and Vmax values for ferric citrate were 45.1 μM and 1.216 μM min−1, respectively. Though ferric reductase activity could be inhibited by Co2+, Cu2+, Mn2+, and Zn2+, even high concentrations of Mg2+ ions have failed to accomplish such enzyme inhibition. Furthermore, the molecular weight, the N-terminal sequence, and the activity of ferric reductase from MSR-1 are not matching with the enzyme preparation obtained from an analogous strain M. magnetotacticum (MS-1). Therefore, it is concluded that the ferric reductase of M. grysphiwaldense and M. magnetotacticum strains are two different enzymes.  相似文献   

5.
A hexavalent chromium [Cr(VI)] reducing bacterial strain was isolated from chromium-containing slag. It was identified as Pannonibacter phragmitetus based on physiological, biochemical characteristics and 16S rRNA gene sequence analysis. This bacterium displayed great Cr(VI) reduction capability. The Cr(VI) could be completely removed in 24 h under anaerobic condition when the initial concentration was 1,917 mg L−1, with the maximum reduction rate of 562.8 mg L−1 h−1. The Cr(VI) reduction rate increased with the increase of Cr(VI) concentration. P. phragmitetus was able to use many carbon sources such as lactose, fructose, glucose, pyruvate, citrate, formate, lactate, NADPH and NADH as electron donors, among which the lactate had the greatest power to promote the reduction process. Zn2+, Cd2+ and Ni2+ inhibited, while Cu2+, Pb2+, Mn2+ and Co2+ stimulated the reduction. The optimum pH and temperature for reduction were 9.0 and 30 °C, respectively. The results indicated that this strain had great potential for application in the bioremediation of chromate-polluted soil and water systems.  相似文献   

6.
Two strains of Chlorella vulgaris Beijerinck isolated from two different sites in Laguna de Bay, Philippines, were studied for their resistance and ability to remove four metal ions, i.e., Cu2+, Cr6+, Pb2+, and Cd2+ added separately in BG-11 growth medium. The growth of the two strains was severely inhibited at 2 mg.L−1 of Cu2+, 5 mg.L−1 of Cr6+, 8 mg.L−1 of Pb2+, and 10 mg.L−1 of Cd2+. However, the two strains exhibited different EC50 values for the same metal ion. The WB strain had a significantly higher resistance (p < 0.01) for Cd2+ and Cr6+ compared with the SB strain, while the SB strain had significantly higher resistance (p < 0.01) for Cu2+ compared with the WB strain. On the other hand, the two strains behaved differently in their capacity to remove the metal ions in BG-11 medium containing 1.0 mg.L−1 of the three metal ions, except for Cu2+, which was added at 0.1 mg.L−1. The WB strain showed the highest removal of Cd2+ at 70.3% of total, followed by Pb2+ at 32%, while the SB strain exhibited the highest removal of Pb2+ at 48.7% followed by Cd2+ at 40.7% of the total. Both strains showed the least removal of Cr6+ at 28% and 20.8% of the total for the WB and SB strains respectively. The percentage removal for Cu2+ was 50.7% and 60.8% for the WB and SB strains respectively. After 12 days of incubation, both strains showed that a greater percentage of the metal ions removed were accumulated intracellularly than adsorbed at a ratio of at least 2:1. Both strains manifested the same cytological deformities, like a loss of pyrenoids at 10 mg.L−1 in all four metal ions. Discoloration and disintegration of chloroplasts were observed at 1.0 mg.L−1 in Cu2+ and 5 mg.L−1 in Cr6+. The nonrelease of autospores from the mother cells was observed at 10 mg.L−1 in Cu2+ and Cr6+. Presented at the 6th Meeting of the Asian Pacific Society of Applied Phycology, Manila, Philippines.  相似文献   

7.
Summary Redox inactivation of glutathione reductase involves metal cations, since chelators protected against NADPH-inactivation, 3 µM EDTA or 10 µM DETAPAC yielding full protection. Ag+, Zn2+ and Cd2+ potentiated the redox inactivation promoted by NADPH alone, while Cr3+, Fe2+, Fe3+, Cu+, and Cu2+ protected the enzyme. The Zn2+ and Cd2+ effect was time-dependent, unlike conventional inhibition. Glutathione reductase interconversion did not require dioxygen, excluding participation of active oxygen species produced by NADPH and metal cations. One Zn2+ ion was required per enzyme subunit to yield full NADPH-inactivation, the enzyme being reactivated by EDTA. Redox inactivation of glutathione reductase could arise from the blocking of the dithiol formed at the active site of the reduced enzyme by metal cations, like Zn2+ or Cd2+.The glutathione reductase activity of yeast cell-free extracts was rapidly inactivated by low NADPH or moderate NADH concentrations; NADP+ also promoted rapid inactivation in fresh extracts, probably after reduction to NADPH. Full inactivation was obtained in cell-free extracts incubated with glucose-6-phosphate or 6-phosphogluconate; the inactivating efficiency of several oxidizable substrates was directly proportional to the specific activities of the corresponding dehydrogenases, confirming that redox inactivation derives from NADPH formed in vitro.Abbreviations DETAPAC diethylenetriaminepentaacetic acid - 2,5-ADP-Sepharose-N6-(6-aminohexyl) adenosine 2,5-bisphosphateSepharose  相似文献   

8.
A thermo stable xylanase was purified and characterized from the cladodes of Cereus pterogonus plant species. The enzyme was purified to homogeneity by ammonium sulfate (80%) fractionation, ion exchange and size exclusion chromatography. The enzyme showed a final specific activity of 216.2 U/mg and the molecular mass of the protein was 80 KDa. The optimum pH and temperature for xylanase activity were 5.0 and 80 °C, respectively,. With oat spelt xylan as a substrate the enzyme yielded a Km value of 2.24 mg/mL and a Vmax of 5.8 μmol min−1 mg−1. In the presence of metal ions (1 mM) such as Co2+,Mn2+, Ni2+, Ca2+ and Fe3+ the activity of the enzyme increased, where as strong inhibition of the enzyme activity was observed with the use of Hg2+, Cd2+, Cu2+, while partial inhibition was noted with Zn2+ and Mg2+. The substrate specificity of the xylanase yielded maximum activity with oat spelt xylan.  相似文献   

9.
The extracellular activity ofAspergillus niger phytase at the end of the growth phase was 132 nkat/mL in a laboratory bioreactor. The purified enzyme has molar mass approximately 100 kDa, pH optimum at 5.0, temperature optimum at 55°C and high pH and temperature stability. TheK m for dodecasodium phytate, calcium phytate and 4-nitrophenyl phosphate are 0.44, 0.45 and 1.38 mmol/L, respectively. The enzyme is noncompetively inhibited by inorganic monophosphate (K i=2.85 mmol/L) and by Cu2+, Zn2+, Hg2+, Sn2+, Cd2+ ions and strongly by F ones; it is activated by Ca2+, Mg2+ and Mn2+ ions. The substrate specificity of phytase is broad with the highest affinity to calcium phytate.  相似文献   

10.
Glutathione reductase (EC 1.6.4.2) was purified from spinach (Spinacia oleracea L.) leaves by affinity chromatography on ADP-Sepharose. The purified enzyme has a specific activity of 246 enzyme units/mg protein and is homogeneous by the criterion of polyacrylamide gel electrophoresis on native and SDS-gels. The enzyme has a molecular weight of 145,000 and consists of two subunits of similar size. The pH optimum of spinach glutathione reductase is 8.5–9.0, which is related to the function it performs in the chloroplast stroma. It is specific for oxidised glutathione (GSSG) but shows a low activity with NADH as electron donor. The pH optimum for NADH-dependent GSSG reduction is lower than that for NADPH-dependent reduction. The enzyme has a low affinity for reduced glutathione (GSH) and for NADP+, but GSH-dependent NADP+ reduction is stimulated by addition of dithiothreitol. Spinach glutathione reductase is inhibited on incubation with reagents that react with thiol groups, or with heavymetal ions such as Zn2+. GSSG protects the enzyme against inhibition but NADPH does not. Pre-incubation of the enzyme with NADPH decreases its activity, so kinetic studies were performed in which the reaction was initiated by adding NADPH or enzyme. The Km for GSSG was approximately 200 M and that for NADPH was about 3 M. NADP+ inhibited the enzyme, assayed in the direction of GSSG reduction, competitively with respect to NADPH and non-competitively with respect to GSSG. In contrast, GSH inhibited non-competitively with respect to both NADPH and GSSG. Illuminated chloroplasts, or chloroplasts kept in the dark, contain equal activities of glutathione reductase. The kinetic properties of the enzyme (listed above) suggest that GSH/GSSG ratios in chloroplasts will be very high under both light and dark conditions. This prediction was confirmed experimentally. GSH or GSSG play no part in the light-induced activation of chloroplast fructose diphosphatase or NADP+-glyceraldehyde-3-phosphate dehydrogenase. We suggest that GSH helps to stabilise chloroplast enzymes and may also play a role in removing H2O2. Glucose-6-phosphate dehydrogenase activity may be required in chloroplasts in the dark in order to provide NADPH for glutathione reductase.Abbreviations GSH reduced form of the tripeptide glutathione - GSSG oxidised form of glutathione  相似文献   

11.
Redox interconversion of glutathione reductase was studiedin situ withS. cerevisiae. The enzyme was more sensitive to redox inactivation in 24 hour-starved cells than in freshly-grown ones. While 5 μM NADPH or 100 μM NADH caused 50% inactivation in normal cells in 30 min, 0.75 μM NADPH or 50 μM NADH promoted a similar effect in starved cells. GSSG reactivated the enzyme previously inactivated by NADPH, ascertaining that the enzyme was subjected to redox interconversion. Low EDTA concentrations fully protected the enzyme from NADPH inactivation, thus confirming the participation of metals in such a process. Extensive inactivation was obtained in permeabilized cells incubated with glucose-6-phosphate or 6-phosphogluconate, in agreement with the very high specific activities of the corresponding dehydrogenases. Some inactivation was also observed with malate, L-lactate, gluconate or isocitrate in the presence of low NADP+ concentrations. The inactivation of yeast glutathione reductase has also been studiedin vivo. The activity decreased to 75% after 2 hours of growth with glucono-δ-lactone as carbon source, while NADPH rose to 144% and NADP+ fell to 86% of their initial values. Greater changes were observed in the presence of 1.5 μM rotenone: enzymatic activity descended to 23% of the control value, while the NADH/NAD+ and NADPH/NADP+ ratios rose to 171% and 262% of their initial values, respectively. Such results indicate that the lowered redox potential of the pyridine nucleotide pool existing when glucono-δ-lactone is oxidized promotesin vivo inactivation of glutathione reductase.  相似文献   

12.
Carbonic anhydrase enzyme, one of the fastest known enzymes, remains largely unexplored in prokaryotes when compared to its mammalian counterparts despite its ubiquity. In this study, the enzyme has been purified from Bacillus subtilis SA3 using sequential Sephadex G-75 chromatography, DEAE cellulose chromatography, and sepharose-4B-L-tyrosinesulphanilamide affinity chromatography and characterized to provide additional insights into its properties. The apparent molecular mass of carbonic anhydrase obtained by SDS-PAGE was found to be approximately 37 kDa. Isoelectric focusing of the purified enzyme revealed an isoelectric point (pI) of around 6.1 when compared with marker. The presence of metal ions such as Zn2+, Co2+, Cu2+, Fe3+, Mg2+, and anion SO4 increased enzyme activity while strong inhibition was observed in the presence of Hg2+, Cl, HCO3, and metal chelator EDTA. The optimum pH and temperature for the enzyme were found to be 8.3 and 37°C, respectively. Enzyme kinetics with p-nitrophenyl acetate as substrate at pH 8.3 and 37°C determined the Vmax and Km values of the enzyme to be 714.28 μmol/mg protein/min and 9.09 mM, respectively. The Ki value for acetazolamide was 0.22 mM, compared to 0.099 mM for sulphanilamide. The results from N-terminal amino acid sequencing imply the purified protein is a putative beta-carbonic anhydrase with close similarities to CAs from plants, microorganisms.  相似文献   

13.
A thermostable laccase was isolated from a tropical white-rot fungus Polyporus sp. which produced as high as 69,738 units of laccase l−1 in an optimized medium containing 20 g of malt extract l−1, 2 g of yeast extract l−1, 1.5 mM CuSO4. The laccase was purified to electrophoretic purity with a final purification of 44.70-fold and a recovery yield of 21.04%. The purified laccase was shown to be a monomeric enzyme with a molecular mass of 60 kDa. The optimum temperature and pH value of the laccase were 75°C and pH 4.0, respectively, for 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS). The Michaelis–Menten constant (K m ) of the laccase was 18 μM for ABTS substrate. The laccase was stable at pH values between 5.5 and 7.5. About 80% of the initial enzyme activity was retained after incubation of the laccase at 70°C for 2 h, indicating that the laccase was intrinsically highly thermostable and with valuable potential applications. The laccase activity was promoted by 4.0 mM of Mg2+, Mn2+, Zn2+ and Ca2+, while inhibited by 4.0 mM of Co2+, Al3+, Cu2+, and Fe2+, showing different profiles of metal ion effects.  相似文献   

14.
In this study, the production of enantiomerically pure (1R,4S,6S)-6-hydroxy-bicyclo[2.2.2]octane-2-one ((−)-2) through stereoselective bioreduction was used as a model reaction for the comparison of engineered Saccharomyces cerevisiae and engineered Escherichia coli as biocatalysts. For both microorganisms, over-expression of the gene encoding the NADPH-dependent aldo-keto reductase YPR1 resulted in high purity of the keto alcohol (−)-2 (>99% ee, 97–98% de). E. coli had three times higher initial reduction rate but S. cerevisiae continued the reduction reaction for a longer time period, thus reaching a higher conversion of the substrate (95%). S. cerevisiae was also more robust than E. coli, as demonstrated by higher viability during bioreduction. It was also investigated whether the NADPH regeneration rate was sufficient to supply the over-expressed reductase with NADPH. Five strains of each microorganism with varied carbon flux through the NADPH regenerating pentose phosphate pathway were genetically constructed and compared. S. cerevisiae required an increased NADPH regeneration rate to supply YPR1 with co-enzyme while the native NADPH regeneration rate was sufficient for E. coli. Nádia Skorupa Parachin and Magnus Carlquist have contributed equally to the paper.  相似文献   

15.
In tilapia (Oreochromis mossambicus) intestine, Mg2+ transport across the epithelium involves a transcellular, Na+- and Na+/K+-ATPase dependent pathway. In our search for the Mg2+ extrusion mechanism of the basolateral compartment of the enterocyte, we could exclude Na+/Mg2+ antiport or ATP-driven transport. Evidence is provided, however, that Mg2+ movement across the membrane is coupled to anion transport. In basolateral plasma membrane vesicles, an inwardly directed Cl gradient stimulated Mg2+ uptake (as followed with the radionuclide 27Mg) twofold. As Cl-stimulated uptake was inhibited by the detergent saponin and by the ionophore A23187, Mg2+ may be accumulated intravesicularly above chemical equilibrium. Valinomycin did not affect uptake, suggesting that electroneutral symport activity occurred. The involvement of anion coupled transport was further indicated by the inhibition of Mg2+ uptake by the stilbene derivative, 4,4′-diisothiocyanato-stilbene-2,2′-disulfonic acid. Kinetic analyses of the Cl-stimulated Mg2+ uptake yielded a K m (Mg2+) of 6.08 ± 1.29 mmol · l−1 and a K m (Cl) of 26.5 ± 6.5 mmol · l−1, compatible with transport activity at intracellular Mg2+- and Cl-levels. We propose that Mg2+ absorption in the tilapia intestine involves an electrically neutral anion symport mechanism. Received: 19 January 1996/Revised: 1 August 1996  相似文献   

16.
The activity on Aspergillus spp. growth and on ochratoxin A production of two novel chromene dimers (3) was evaluated. The results of the bioassays indicate that the chromene dimer 3a inhibited mycelia growth by approximately 50% (EC50) at 140.1 μmol L−1 for A. niger, 384.2 μmol L−1 for A. carbonarius, 69.1 μmol L−1 for A. alliaceus and 559.1 μmol L−1 for A. ochraceus. When applied at concentrations of 2 mmol L−1, 3a totally inhibited the growth of all Aspergillus spp. tested. Furthermore, ochratoxin A production by A. alliaceus was reduced by about 94% with a 200 μmol L−1 solution of this compound. A moderate inhibitory effect was observed for the analogous structure 3b on ochratoxin A production but not in mycelia growth. No inhibition was registered for compounds 2a and 2b, used as synthetic precursors of the dimeric species 3.  相似文献   

17.
Using degenerate polymerase chain reaction (PCR) and thermal asymmetric interlaced PCR, a 1,347-bp full-length complementary DNA fragment encompassing the gene man5A, which encodes a 429-amino acid β-mannanase with a calculated mass of 46.8 kDa, was cloned from acidophilic Bispora sp. MEY-1. The deduced amino acid sequence (catalytic domain) displayed highest identity (54.1%) with the Emericella nidulans endo-β-1,4-d-mannanase, a member of the glycoside hydrolase family 5. Recombinant MAN5A was overexpressed in Pichia pastoris, and its activity in the culture medium reached 500 U ml−1. The enzyme was acidophilic, with highest activity at pH 1.0–1.5, lower than any known mannanases, and optimal temperature for activity was 65°C. MAN5A had good pH adaptability, excellent thermal and pH stability, and high resistance to both pepsin and trypsin. The specific activity, K m, and V max for locust bean gum substrate was 3,373 U mg−1, 1.56 mg ml−1, and 6,587.6 μmol min−1 mg−1, respectively. The enzymatic activity was not significantly affected by ions such as Ca2+, Cr3+, Co2+, Zn2+, Na+, K+, and Mg2+ and enhanced by Ni2+, Fe3+, Mn2+ and Ag+. These favorable properties make MAN5A a potential candidate for use in various industrial applications.  相似文献   

18.
Mg2+ in various concentrations was added to purified Rubisco in vitro to gain insight into the mechanism of molecular interactions between Mg2+ and Rubisco. The enzyme activity assays showed that the reaction between Rubisco and Mg2+ was two order, which means that the enhancement of Rubisco activity was accelerated by low concentration of Mg2+ and slowed by high concentration of Mg2+. The kinetics constant (K m) and V max was 1.91 μM and 1.13 μmol CO2 mg−1 protein∙min−1, respectively, at a low concentration of Mg2+, and 3.45 μM and 0.32 μmol CO2∙mg−1 protein∙min−1, respectively, at a high concentration of Mg2+. By UV absorption and fluorescence spectroscopy assays, the Mg2+ was determined to be directly bound to Rubisco; the binding site of Mg2+ to Rubisco was 0.275, the binding constants (K A) of the binding site were 6.33 × 104 and 5.5 × 104 l·mol−1. Based on the analysis of the circular dichroism (CD) spectra, it was concluded that the binding of Mg2+ did not alter the secondary structure of Rubisco, suggesting that the observed enhancement of Rubisco carboxylase activity was caused by a subtle structural change in the active site through the formation of the complex with Mg2+.  相似文献   

19.
Based on analysis of the genome sequence of Bacillus licheniformis ATCC 14580, an isomerase-encoding gene (araA) was proposed as an l-arabinose isomerase (L-AI). The identified araA gene was cloned from B. licheniformis and overexpressed in Escherichia coli. DNA sequence analysis revealed an open reading frame of 1,422 bp, capable of encoding a polypeptide of 474 amino acid residues with a calculated isoelectric point of pH 4.8 and a molecular mass of 53,500 Da. The gene was overexpressed in E. coli, and the protein was purified as an active soluble form using Ni–NTA chromatography. The molecular mass of the purified enzyme was estimated to be ~53 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and 113 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme required a divalent metal ion, either Mn2+or Co2+, for enzymatic activity. The enzyme had an optimal pH and temperature of 7.5 and 50°C, respectively, with a k cat of 12,455 min−1 and a k cat/K m of 34 min−1 mM−1 for l-arabinose, respectively. Although L-AIs have been characterized from several other sources, B. licheniformis L-AI is distinguished from other L-AIs by its wide pH range, high substrate specificity, and catalytic efficiency for l-arabinose, making B. licheniformis L-AI the ideal choice for industrial applications, including enzymatic synthesis of l-ribulose. This work describes one of the most catalytically efficient L-AIs characterized thus far.  相似文献   

20.
EstA was purified from the supernatant by A. lwoffii 16C-1. Its molecular mass was determined to be 45 kDa, and the optimal activity occurred when the pH level was 8.0 at a temperature of 37°C. The activation energies for the hydrolysis of p-nitrophenyl butyrate was determined to be 11.25 kcal/mol in the temperature range of 10–37°C. The enzyme was unstable at temperatures higher than 50°C. The Michaelis constant (K m ) and V max for p-nitrophenyl butyrate were 11 μM and 131.6 μM min−1 mg of protein-1, respectively. The enzyme was strongly inhibited by Hg2−, Ca2+, Mg2+, Fe2+, Cu2+, Zn2+, Mn2+, Co2+, ethylemediaminetetraacetic acid (EDTA), phenylmethylsulfonyl fluoride (PMSF), and diisopropyl fluorophosphate (DFP). Received: 20 August 2001 / Accepted: 20 September 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号