首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nordihydroguaiaretic acid inhibits prostaglandin (PG) biosynthesis in vitro (ID50=228 muM), with a slope of dose-response curve high (b=209) as compared with indomethacin (ID50=0.1 muM, b=72.1). Butylated hydroxyanisole, in contrast to inactive butylated hydroxytoluene, inhibits PG biosynthesis (ID50=107 muM, b=63). Only norihydroguaiaretic acid (100 mug, s.p.) inhibited the postcarrageenin edema of rat paw. Butylated hydroxyanisole (10 mug, s.p.) given together with a subthreshold (1 mug) dose of indomethacin inhibited the paw edema by 35%, while butylated hydroxytoluene and nordihydroguaiaretic acid produced a similar effect only when given at 10-fold higher doses. The results suggest the possibility of potentiation and prolongation of the anti-inflammatory effect of indomethacin by its simultaneous administration with an antioxidant, butylated hydroxyanisole.  相似文献   

2.
3.
Propofol (2,6-diisopropylphenol), some substituted phenols (2,6-dimethylphenol and 2,6-ditertbutylphenol) and their 4-nitrosoderivatives have been compared for their scavenging ability towards 1,1-diphenyl-2-picrylhydrazyl and for their inhibitory action on lipid peroxidation. These products were also compared to the classical antioxidants butylated hydroxytoluene and butylated hydroxyanisole. When measuring the reactivity of the various phenolic derivatives with 1,1-diphenyl-2-picrylhydrazyl the following order of effectiveness was observed: butylated hydroxyanisole > propofol > 2,6-dimethylphenol > 2,6-di-tertbutylphenol > butylated hydroxytoluene. In cumene hydroperoxide-dependent microsomal lipid peroxidation, propofol acts as the most effective antioxidant, while butylated hydroxyanisole, 2,6-di-tertbutylphenol and butylated hydroxytoluene exhibit a rather similar effect, although lower than propofol. In the iron/ascorbate-dependent lipid peroxidation propofol, at concentrations higher than 10 microM, exhibits antioxidant properties comparable to those of butylated hydroxytoluene and butylated hydroxyanisole, 2,6-Dimethylphenol is scarcely effective in both lipoperoxidative systems. The antioxidant properties of the various molecules depend on their hydrophobic characteristics and on the steric and electronic effects of their substituents. However, the introduction of the nitroso group in the 4-position almost completely removes the antioxidant properties of the examined compounds. The nitrosation of the aromatic ring of antioxidant molecules and the consequent loss of antioxidant capacity can be considered a condition potentially occurring in vivo since nitric oxide and its derivatives are continuously formed in biological systems.  相似文献   

4.
In certain tissues, glutathione biosynthesis is connected to methionine metabolism via the trans-sulfuration pathway. The latter condenses homocysteine and serine to cystathionine in a reaction catalyzed by cystathionine beta-synthase followed by cleavage of cystathionine to cysteine and alpha-ketoglutarate by gamma-cystathionase. Cysteine is the limiting amino acid in glutathione biosynthesis, and studies in our laboratory have shown that approximately 50% of the cysteine in glutathione is derived from homocysteine in human liver cells. In this study, we have examined the effect of pro- and antioxidants on the flux of homocysteine through the trans-sulfuration pathway in the human hepatoma cell line, HepG2. Our studies reveal that pyrrolidine dithiocarbamate and butylated hydroxyanisole enhance the flux of homocysteine through the trans-sulfuration pathway as has been observed previously with the pro-oxidants, H(2)O(2) and tertiary butyl hydroperoxide. In contrast, antioxidants such as catalase, superoxide dismutase and a water-soluble derivative of vitamin E elicit the opposite effect and result in diminished flux of homocysteine through the trans-sulfuration pathway. These studies provide the first evidence for the reciprocal sensitivity of the trans-sulfuration pathway to pro- and antioxidants, and demonstrate that the upstream half of the glutathione biosynthetic pathway (i.e. leading to cysteine biosynthesis) is redox sensitive as is the regulation of the well-studied enzymes in the downstream half (leading from cysteine to glutathione), namely, gamma-glutamyl-cysteine ligase and glutathione synthetase.  相似文献   

5.
A novel cytosolic Alpha class glutathione S-transferase (GST) that is not normally expressed in mouse liver was found to be markedly induced (at least 20-fold) by the anti-carcinogenic compound butylated hydroxyanisole. This enzyme (designated GST Ya1 Ya1) did not bind to either the S-hexylglutathione-Sepharose or the glutathione-Sepharose affinity matrices, and purification was achieved by using bromosulphophthalein-glutathione-Sepharose. The purified isoenzyme, which comprises subunits of Mr 25,600, was characterized, and its catalytic, electrophoretic, immunochemical and structural properties are documented. GST Ya1 Ya1 was shown to be distinct from the Alpha class GST that is expressed in normal mouse liver and is composed of 25,800-Mr subunits; the Alpha class isoenzyme that is constitutively expressed in the liver is now designated GST Ya3 Ya3. Hepatic concentrations of GST Ya3 Ya3 were not significantly affected when mice were treated with butylated hydroxyanisole. Both Pi class GST (subunit Mr 24,800) and Mu class GST (subunit Mr 26,400) from female mouse liver were induced by dietary butylated hydroxyanisole. By contrast, hepatic concentrations of microsomal GST (subunit Mr 17,300) were unaffected.  相似文献   

6.
Propofol (2,6-diisopropylphenol), some substituted phenols (2,6-dimethylphenol and 2,6-ditertbutylphenol) and their 4-nitrosoderivatives have been compared for their scavenging ability towards 1,1-diphenyl-2-picrylhydrazyl and for their inhibitory action on lipid peroxidation. These products were also compared to the classical antioxidants butylated hydroxytoluene and butylated hydroxyanisole. When measuring the reactivity of the various phenolic derivatives with 1,1-diphenyl-2-picrylhydrazyl the following order of effectiveness was observed: butylated hydroxyanisole>propofol>2,6-dimethylphenol>2,6-di-tertbutylphenol?>?butylated hydroxytoluene. In cumene hydroperoxide-dependent microsomal lipid peroxidation, propofol acts as the most effective antioxidant, while butylated hydroxyanisole, 2,6-di-tertbutylphenol and butylated hydroxytoluene exhibit a rather similar effect, although lower than propofol. In the iron/ascorbate-dependent lipid peroxidation propofol, at concentrations higher than 10?μM, exhibits antioxidant properties comparable to those of butylated hydroxytoluene and butylated hydroxyanisole. 2,6-Dimethylphenol is scarcely effective in both lipoperoxidative systems. The antioxidant properties of the various molecules depend on their hydrophobic characteristics and on the steric and electronic effects of their substituents. However, the introduction of the nitroso group in the 4-position almost completely removes the antioxidant properties of the examined compounds. The nitrosation of the aromatic ring of antioxidant molecules and the consequent loss of antioxidant capacity can be considered a condition potentially occurring in vivo since nitric oxide and its derivatives are continuously formed in biological systems.  相似文献   

7.
Clement Ip 《Life sciences》1984,34(25):2501-2506
The present study was designed to examine changes in glutathione metabolism in the liver of mice as influenced by supplementation of their diet with 1 of 4 antioxidants: butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), vitamin E and selenium. In addition to determination of the acid-soluble thiol levels, 5 different enzymes involved with glutathione utilization and synthesis were measured: glutathione transferase, γ-glutamyl transpeptidase, selenium-dependent glutathione peroxidase, γ-glutamylcysteine synthetase and glutathione reductase. All 4 antioxidants produced significant increases in glutathione transferase activity, with BHA and BHT being much more effective than the other two. With the exception of vitamin E, BHA, BHT and selenium all resulted in a slight enhancement in the activity of glutathione reductase as well as in the acid-soluble thiol level. On the other hand, the induction of γ-glutamyl transpeptidase and γ-glutamylcysteine synthetase was responsive to only vitamin E and selenium supplementation, respectively. Although the influence of each of these antioxidants in glutathione metabolism appears to be specific and somewhat compartmentalized, the overall impression is that of an increased capacity for glutathione-conjugate formation and recovery of reduced glutathione. These biochemical changes in glutathione metabolism may be relevant to the anticarcinogenic effects observed with BHA, BHT and selenium.  相似文献   

8.
The commonly used food-additive antioxidants, butylated hydroxyanisole and butylated hydroxytoluene, are inhibitors of the hepatic microsomal mono-oxygenase system, as assayed by benzpyrene hydroxylase activity and demethylase activities. Generally, butylated hydroxyanisole is a more potent inhibitor than butylated hydroxytoluene. Both inhibitors bind to cytochrome P-450 and induce “type I” binding spectra. Cytochrome P-450 is tentatively assigned as the site of inhibition.  相似文献   

9.
10.
Abstract: Glutamate-induced glutathione depletion in immature embryonic cortical neurons has been shown to lead to oxidative stress and cell death. We have used this in vitro model to investigate the mechanism(s) by which free radicals induce neuronal degeneration. We find that glutathione depletion leads to hypercondensation and fragmentation of chromatin into spherical or irregular shapes, a morphologic signature of apoptosis. These morphologic changes are accompanied by laddering of DNA into multiple oligonucleosomal fragments and can be prevented by the antioxidants idebenone and butylated hydroxyanisole. Cell death induced by glutathione depletion can also be prevented by inhibitors of macromolecular synthesis. Taken together, these observations suggest that oxidative stress can induce apoptosis in neurons.  相似文献   

11.
Nephrotoxic cysteine conjugates kill cells after they are metabolized by the enzyme cysteine conjugate beta-lyase to reactive fragments which bind to cellular macromolecules. We have investigated the cellular events which occur after the binding and lead ultimately to cell death in renal epithelial cells. Using S-(1,2-dichlorovinyl)-L-cysteine (DCVC) as a model conjugate, we found that the phenolic antioxidants N,N'-diphenyl-p-phenylenediamine (DPPD), butylated hydroxyanisole, butylated hydroxytoluene, propyl galate, and butylated hydroxyquinone, and the iron chelator deferoxamine inhibited the cytotoxicity significantly. Among the five antioxidants, DPPD was most potent. DPPD blocked DCVC toxicity over an extended time period, and the rescued cells remained functional as measured by protein synthetic activity. DPPD was able to block the toxicity of two other toxic cysteine conjugates S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine and S-(1,1,2,2-tetrafluoroethyl)-L-cysteine. In addition to LLC-PK1 cells, DPPD also protected freshly isolated rat kidney epithelial cells in suspension and in primary culture. In suspension cells, DPPD was effective at low doses of DCVC (25-50 microM) but not at high concentrations (250-500 microM). DPPD inhibition was not due to an inactivation of beta-lyase or a decrease in the binding of [35S]DCVC metabolites to cellular macromolecules and occurred at a step after the activation of the toxins. During DCVC treatment, lipid peroxidation products were detectable prior to cell death. DPPD blocked lipid peroxidation over the whole time course. Depletion of nonprotein thiols also occurred prior to cell death. DPPD did not prevent the loss of nonprotein thiols. However, the sulfhydryl-reducing agent DTT blocked lipid peroxidation and toxicity at a step after the activation of DCVC. Therefore, it appears that cysteine conjugates kill renal epithelial cells by a combination of covalent binding, depletion of nonprotein thiols, and lipid peroxidation.  相似文献   

12.
The antioxidative activity of some natural flavonoids was analyzed against the stable free radical 2,2-diphenyl-1-picryhydrazyl. The results indicate that the scavenging power of the tested flavonols is higher than that of the synthetic antioxidants butylated hydroxyanisole and butylated hydroxytoluene; instead, the flavanones show little activity, as indicated by efficient concentration (EC50) values. Flavonoid autoxidation and interaction with Fe2+ and hydrogen peroxide were tested using erythrocyte membranes as a model. The results show that some compounds, like hesperetin, evidence a pro-oxidant activity higher than the ascorbic acid/iron reference system. The compounds with strong oxidative capability do not only influence cellular redox balance but also activate caspase-3, producing lactate dehydrogenase release and enhancing anionic exchange at the level of band 3 protein.  相似文献   

13.
The nonenzymatic reaction of the cytotoxic compounds menadione (2-methyl-1,4-naphthoquinone) and 1,4-naphthoquinone (a reactive metabolite of 1-naphthol) with reducing agents such as NADPH and glutathione led to the formation of semiquinone-free radicals, which were detected with electron spin resonance spectroscopy. In the presence of glutathione as a reducing agent, menadione and 1,4-naphthoquinone underwent net one-electron reduction and conjugation with glutathione. At higher concentrations of glutathione, 1,4-naphthoquinone formed the semiquinones of both the monoconjugate and the diconjugate. The naphthoquinone-glutathione conjugates should redox cycle in a manner already known for the menadione conjugate. The semiquinone intermediates could be detected only under a nitrogen atmosphere and are probably the primary oxygen-reactive species responsible for the redox cycling of menadione- and naphthoquinone-glutathione conjugates.  相似文献   

14.
We synthesized two carminic acid (7-alpha-d-glucopyranosyl-9,10-dihydro-3,5,6,8-tetrahydroxy-1-methyl-9,10-dioxo-2-anthracene carboxlic acid, CA)-GnRH conjugates to be used as a model for potential photoactive targeted compounds. CA was conjugated to the epsilon-amino group of [d-Lys(6)]GnRH through its carboxylic moiety or via a beta-alanine spacer (beta-ala). Redox potentials of CA and its conjugates were determined. We used electron spin resonance (ESR) and spin trapping techniques to study the light-stimulated redox properties of CA and its CA-GnRH conjugates. Upon irradiation, the compounds stimulated the formation of reactive oxygen species (ROS), that is, singlet oxygen ((1)O(2)) and oxygen radicals (O(2)(-*) and OH(*)). Both conjugates exhibited higher ROS production than the non-conjugated CA. The bioactivity properties of the CA conjugates and the parent peptide, [d-Lys(6)]GnRH, were tested on primary rat pituitary cells. We found that the conjugates preserved the bioactivity of GnRH as illustrated by their capability to induce ERK phosphorylation and LH release.  相似文献   

15.
《Free radical research》2013,47(5):297-304
The redox state of red blood cell components was found to have profound effects on the specific inactivation of erythrocyte glutathione (GSH) peroxidase by divicine, a hydroquinone imine molecule of fava beans likely to be responsible, through redox cycling, of the oxidative damage of red blood cells ultimately resulting in the hemolysis of favism. Oxidation of hemoglobin is a necessary step for the inactivation to take place, apparently as a H2O2-MetHb adduct. On the other hand, the presence of either reduced NADP or glutathione enhances the inactivating effect although NADPH inhibits the oxidation of hemoglobin, and this suggests a catalytic role for MetHb in the inactivation process.  相似文献   

16.
Glutathione conjugation as a bioactivation reaction   总被引:3,自引:0,他引:3  
In general, glutathione conjugation is regarded as a detoxication reaction. However, depending on the properties of the substrate, bioactivation is also possible. Four types of activation reaction have been recognized: direct-acting compounds, conjugates that are activated through cysteine conjugate beta-lyase, conjugates that are activated through redox cycling and lastly conjugates that release the original reactive parent compound. The glutathione S-transferases have three connections with the formation of biactivated conjugates: they catalyze their formation in a number of cases, they are the earliest available target for covalent binding by these conjugates and lastly, the parent alkylating agents are regularly involved in the induction of the enzymes. Individual susceptibility for each of these agents is determined by individual transferase subunit composition and methods are becoming available to assess this susceptibility.  相似文献   

17.
18.
NADPH-dependent oxygen utilization by liver microsomal fractions was stimulated by the addition of increasing concentrations of butylated hydroxyanisole concomitant with the inhibition of benzphetamine N-demethylase activity. The apparent conversion of monooxygenase activity to an oxidase-like activity in the presence of the antioxidant was correlated with the partial recovery of the reducing equivalents from NADPH in the form of increased hydrogen peroxide production. The progress curve of liver microsomal NADPH oxidase activity in the presence of butylated hydroxyanisole displayed a lag phase indicative of the formation of a metabolite capable of uncoupling the monooxygenase activity. Ethyl acetate extracts of microsomal reaction mixtures obtained in the presence of butylated hydroxyanisole, oxygen, and NADPH stimulated the NADPH oxidase activity of either liver microsomes or purified NADPH-cytochrome c (P-450) reductase. Using high performance liquid chromatography, gas chromatography, and mass spectrometry techniques, two metabolites of butylated hydroxyanisole, namely t-butylhydroquinone and t-butylquinone, were identified. The quinone metabolite and/or its 1-electron reduction product interact with the flavoprotein reductase to directly link the enzyme to the reduction of oxygen which results in an inhibition of the catalytic activity of the cytochrome P-450-dependent monooxygenase.  相似文献   

19.
BACKGROUND: We have previously shown that there were great discrepancies between different agents regarding their glutathione stimulating potential and that agents with mainly oxidative effects did not increase concentrations of glutathione in human cell cultures, in contrast to other thiol reactive agents. In order to evaluate whether increased glutathione degradation might be one reason for these discrepancies, we have investigated the effect of different agents with potential influence on glutathione metabolism in human cell cultures with or without acivicin inhibition of gamma-glutamyltranspeptidase (GT), since GT is responsible for the initial degradation of glutathione. METHODS: Intra- and extracellular concentrations of glutathione were investigated in HeLa and hepatoma cell cultures, with and without acivicin inhibition of GT, in the presence of oxidative and electrophilic agents (copper ions, hydrogen peroxide and N-ethylmaleimide), hydroquinone, reducing agents (lipoic acid and N-acetylcysteine), and a thiol reactive metal (mercury ions). RESULTS: There were great discrepancies between the different agents regarding their maximal glutathione response (the sum of the intracellular and the extracellular amount of glutathione) in cell cultures. There was only a small increase in total glutathione in the presence of hydrogen peroxide or N-ethylmaleimide before the cell protein decreased compared to findings with mercury ions, lipoic acid or hydroquinone. In both HeLa and hepatoma cell cultures, there were correlations between the original glutathione amount and the total glutathione amount observed after acivicin inhibition. CONCLUSION: The relatively small increase of glutathione amount in the presence of oxidative and electrophilic agents compared to other thiol reactive agents is not due to increased GT degradation of glutathione.  相似文献   

20.
A highly sensitive and convenient high‐performance liquid chromatography technique coupled with chemiluminescence detection for the simultaneous determination butylated hydroquinone (TBHQ) and butylated hydroxyanisole (BHA) in oil is established. The detection is based on the inhibitory effect on the CL reaction between luminol and potassium ferricyanide in an alkaline medium. Samples were separated through a reverse‐phase C18 column using a mobile phase of methanol and water (80: 20, v/v) at a flow rate of 0.5 mL/min. The effects of various parameters including mobile phase, flow rate and chemiluminescence regent were studied. Under optimum conditions, both TBHQ and BHA showed good linear relationships in the range 1 × 10‐7–1 × 10‐5 g/mL with detection limits of 24 and 33 ng/mL, respectively. The proposed method is simple and sensitive, with low costs. The method was successfully applied for the quantification of TBHQ and BHA in sesame oil. The possible inhibition mechanism is also discussed briefly. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号