共查询到20条相似文献,搜索用时 0 毫秒
1.
The uranium uptake ability of silk fibroin was investigated. High ability to uptake uranium from nonsaline water containing
2.500 mg of uranium was observed with the silk fibroin tested. The uranium uptake was very rapid and was dependent on pH,
uranium concentration, temperature, and retention time. Almost all uranium taken up is easily eluted with 1 mol/L CH3COONH4. This biomatrix, therefore appears to have potential for use in a commercial process for uranium recovery from uranium-containing
waste water. 相似文献
2.
Microcomposite fibers of regenerated silk fibroin (RSF) and multiwalled carbon nanotubes (MWNTs) were successfully prepared by an electrospinning process from aqueous solutions. A quiescent blended solution and a three-dimensional Raman image of the composite fibers showed that functionalized MWNTs (F-MWNTs) were well dispersed in the solutions and the RSF fibers, respectively. Raman spectra and wide-angle X-ray diffraction (WAXD) patterns of RSF/F-MWNT electrospun fibers indicated that the composite fibers had higher β-sheet content and crystallinity than the pure RSF electrospun fibers, respectively. The mechanical properties of the RSF electrospun fibers were improved drastically by incorporating F-MWNTs. Compared with the pure RSF electrospun fibers, the composite fibers with 1.0 wt % F-MWNTs exhibited a 2.8-fold increase in breaking strength, a 4.4-fold increase in Young's modulus, and a 2.1-fold increase in breaking energy. Cytotoxicity test preliminarily demonstrated that the electrospun fiber mats have good biocompatibility for tissue engineering scaffolds. 相似文献
3.
4.
Silk fibroin, derived from Bombyx mori cocoons, is a widely used and studied protein polymer for biomaterial applications. Silk fibroin has remarkable mechanical properties when formed into different materials, demonstrates biocompatibility, has controllable degradation rates from hours to years and can be chemically modified to alter surface properties or to immobilize growth factors. A variety of aqueous or organic solvent-processing methods can be used to generate silk biomaterials for a range of applications. In this protocol, we include methods to extract silk from B. mori cocoons to fabricate hydrogels, tubes, sponges, composites, fibers, microspheres and thin films. These materials can be used directly as biomaterials for implants, as scaffolding in tissue engineering and in vitro disease models, as well as for drug delivery. 相似文献
5.
The controlled release of fluorescein-iso-thio-cyanate (FITC)-labeled dextrans from methanol-treated and untreated silk fibroin films was modeled to characterize the release kinetics and mechanisms. Silk films were prepared with FITC-dextrans of various molecular weights (4, 10, 20, 40 kDa). Methanol treatment was used to promote crystallinity. The release data were assessed with two different models, an empirical exponential equation commonly fit to release data and a mechanism-based semiempirical model derived from Fickian diffusion through a porous film. The FITC-dextran release kinetics were evaluated as a function of molecular weight and compared between the untreated- and methanol-treated films. For the empirical model, the estimated values of the model parameters decreased with the molecular weight of the analyte and showed no significant difference between untreated- and methanol-treated films. For the diffusion-based model, the estimated diffusion coefficient was smaller for the methanol-treated films than for the untreated films. Also, the diffusion coefficient was observed to decrease linearly with increasing molecular weight of the analyte. The percent of FITC-dextran loading entrapped and not released was less for the methanol-treated films than for untreated films and linearly increased with molecular weight. A linear regression was fit to the relationship between molecular weight and the percent of entrapped FITC-dextran particles. Using these defined linear relationships, we present an updated version of the diffusion model for simulating release of FITC-dextran of varied molecular weights from methanol-treated and untreated silk films. 相似文献
6.
Morphology and structure of electrospun mats from regenerated silk fibroin aqueous solutions with adjusting pH 总被引:1,自引:0,他引:1
In this paper, regenerated silk fibroin (SF) aqueous solutions were adjusted to a pH of 6.9 by mimicing the condition in the posterior division of silkworm's gland and rheological behavior of solutions was investigated. The electrospinning technique was used to prepare fibers, and non-woven mats of regenerated B. mori silk fibroin were successfully obtained. The effects of electrospinning parameters on the morphology and diameter of regenerated silk fibers were investigated by orthogonal design. Statistical analysis showed that voltage, the concentration of regenerated SF solutions and the distance between tip and collection plate were the most dominant parameters to fiber morphology, diameter and diameter distribution, respectively. An optimal electrospinning condition was obtained in producing uniform cylindrical fibers with an average diameter of 1300nm. It was as follows: the concentration 30%, voltage 40kV, distance 20cm. The structure of electrospun mats was characterized by Raman spectroscopy (RS), wide-angle X-ray diffraction (WAXD) and modulated differential scanning calorimetry (MDSC). It was found that electrospun mats were predominantly random coil/silk I structure, and the transition to silk II (beta-sheet) rich structure should be further explored. 相似文献
7.
Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning 总被引:1,自引:0,他引:1
Regenerated silk fibroin materials show properties dependent on the methods used to process them. The molecular structures of B. mori silk fibroin both in solution and in solid states were studied and compared using X-ray diffraction, FTIR, and (13)C NMR spectroscopy. Some portion of fibroin protein molecules dissolved in formic acid already have a beta-sheet structure, whereas those dissolved in TFA have some helical conformation. Moreover, fibroin molecules were spontaneously assembled into an ordered structure as the acidic solvents were removed from the fibroin-acidic solvent systems. This may be responsible for the improved physical properties of regenerated fibroin materials from acidic solvents. Regenerated fibroin materials have shown poor mechanical properties and brittleness compared to their original form. These problems were technically solved by improving the fiber forming process according to a method reported here. The regenerated fibroin fibers showed much better mechanical properties compared to the native silk fiber and their physical and chemical properties were characterized by X-ray diffraction, solid state (13)C NMR spectroscopy, SinTech tensile testing, and SEM. 相似文献
8.
9.
Porous 3-D scaffolds from regenerated silk fibroin 总被引:13,自引:0,他引:13
Three fabrication techniques, freeze-drying, salt leaching and gas foaming, were used to form porous three-dimensional silk biomaterial matrixes. Matrixes were characterized for morphological and functional properties related to processing method and conditions. The porosity of the salt leached scaffolds varied between 84 and 98% with a compressive strength up to 175 +/- 3 KPa, and the gas foamed scaffolds had porosities of 87-97% and compressive strength up to 280 +/- 4 KPa. The freeze-dried scaffolds were prepared at different freezing temperatures (-80 and -20 degrees C) and subsequently treated with different concentrations (15 and 25%) and hydrophilicity alcohols. The porosity of these scaffolds was up to 99%, and the maximum compressive strength was 30 +/- 2 KPa. Changes in silk fibroin structure during processing to form the 3D matrixes were determined by FT-IR and XrD. The salt leached and gas foaming techniques produced scaffolds with a useful combination of high compressive strength, interconnected pores, and pore sizes greater than 100 microns in diameter. The results suggest that silk-based 3D matrixes can be formed for utility in biomaterial applications. 相似文献
10.
Jaeho Jeong Won Hur 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2010,878(9-10):836-840
A protease with broad substrate specificity usually produces a complex peptide mixture. However, even-numbered peptides were obtained at high proportion upon papain hydrolysis of fibroin composed of highly repetitive Ala- and Gly-rich blocks. MALDI-TOF and ESI mass spectrometric analysis revealed that the even-numbered peptides were in the forms of di-, tetra-, hexa-, and octa-peptides with repeating units in combination of Ala–Gly, Ser–Gly, Tyr–Gly, and Val–Gly. Application of tandem mass spectrometry identified the sequences of the tetra-peptides to be in the order of Ala–Gly–X–Gly (X = Tyr or Val). Therefore, the substrate specificity of papain and the unique repetitive sequence of fibroin generated the hydrolysate composed of even number of amino acids at a high percentage. In this work, fibroin hydrolysate was investigated as an example of an end product of protein hydrolysis, which provides a clue to understand the fate of peptides in a protein hydrolysate. 相似文献
11.
12.
The fine structure of Bombyx mori silk fibroin was investigated by electron microscopy and X-ray diffraction techniques. Examination of silk fibers fragmented with ultrasonic radiation and negatively stained revealed the presence of ribbon-like filaments of well-defined lateral dimensions. Analysis of the breadths of the equatorial reflections in the X-ray diffraction pattern of fibroin yielded similar dimensions for the lateral extent of the crystallites. It is concluded that the crystalline material in B. mori silk fibroin is in the form of ribbon-like filaments of considerable length parallel to the fiber axis and of lateral dimensions approximately 20 x 60 A. 相似文献
13.
14.
This article describes the characteristics of silk fibroin membranes and glucose oxidase, immobilized in membranes as determined by a variety of physical methods, mainly the spin-label electron spin resonance (ESR) method. The properties of membranes insolubilized by different methods, i. e., immersion in 80% methanol aqueous solution, uniaxially drawing by placing on a stretcher, and hydration by placing in a desiccator of 96% relative humidity (RH) for 17 h, are compared. The results are also analyzed in relation to ESR spectra of spin-labeled immobilized glucose oxidase and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxy as a model of the substrate. It is concluded that the heterogeneous structures of the swollen membranes in water differ locally among membranes insolubilized by different methods, but the immobilized state of the enzyme in such membranes is mostly similar. This is correlated to the fact that the thermal or pH stabilities are essentially same among glucose-oxidase-immobilized silk fibroin membranes insolubilized by different methods. 相似文献
15.
16.
Studies on the posterior silk gland of the silkworm Bombyx mori. V. Electron microscope localization of fibroin in the posterior silk gland at the later stage of the fifth instar
下载免费PDF全文

《The Journal of cell biology》1976,70(3):648-659
Electron microscope observations of thin sections of epoxy resin- embeded posterior silk gland cells at the later stage of the fifth instar revealed that the Golgi vacuoles and the secretory granules (fibroin globules) in the cytoplasm and the glandular lumen contain fine fibrous materials. In frozen thin sections these structures appear as electron-dense granules and electron-dense blocks, or a column, respectively. Immunoelectron microscopy has shown that ferritin particles or products of the peroxidase reaction are localized on these structures. It was concluded that the fine fibrous materials most probably represent native fibroin molecules or their aggregates. 相似文献
17.
In this paper, the spinnable regenerated silk fibroin aqueous solution with high concentration was prepared and the regenerated silk fibers were obtained from the aqueous solution by two different spinning processes at ambient temperature. The orientation of these fibers was characterized by polarizing microscope. Their secondary structure was investigated by Raman spectroscopy and related mechanical properties were also measured. These data showed that shearing is an important step for increasing orientation and silk II (β-sheet) structure, and the mechanical properties of the regenerated silk fibers can also be improved by shearing. 相似文献
18.
Degradation mechanism and control of silk fibroin 总被引:1,自引:0,他引:1
Controlling the degradation process of silk is an important and interesting subject in the field of biomaterials. In the present study, silk fibroin films with different secondary conformations and nanostructures were used to study degradation behavior in buffered protease XIV solution. Different from previous studies, silk fibroin films with highest β-sheet content achieved the highest degradation rate in our research. A new degradation mechanism revealed that degradation behavior of silk fibroin was related to not only crystal content but also hydrophilic interaction and then crystal-noncrystal alternate nanostructures. First, hydrophilic blocks of silk fibroin were degraded. Then, hydrophobic crystal blocks that were formerly surrounded and immobilized by hydrophilic blocks became free particles and moved into solution. Therefore, on the basis of the mechanism, which enables the process to be more controllable and flexible, controlling the degradation behavior of silk fibroin without affecting other performances such as its mechanical or hydrophilic properties becomes feasible, and this would greatly expand the applications of silk as a biomedical material. 相似文献
19.
Phase behavior and hydration of silk fibroin 总被引:2,自引:0,他引:2
The osmotic stress method was applied to study the thermodynamics of supramolecular self-assembly phenomena in crystallizable segments of Bombyx mori silkworm silk fibroin. By controlling compositions and phases of silk fibroin solution, the method provided a means for the direct investigation of microscopic and thermodynamic details of these intermolecular interactions in aqueous media. It is apparent that as osmotic pressure increases, silk fibroin molecules are crowded together to form silk I structure and then with further increase in osmotic pressure become an antiparallel beta-sheet structure, silk II. A partial ternary phase diagram of water-silk fibroin-LiBr was constructed based on the results. The results provide quantitative evidence that the silk I structure must contain water of hydration. The enhanced control over structure and phase behavior using osmotic stress, as embodied in the phase diagram, could potentially be utilized to design a new route for water-based wet spinning of regenerated silk fibroin. 相似文献
20.
用桑蚕丝素蛋白制备邻苯二酚酶传感器 总被引:4,自引:0,他引:4
从蘑菇组织中提取邻苯二酚粗酶 ,利用丝素蛋白在甲醇作用下 ,其分子结构由可溶性randomcoil向不容性 β -sheet发生转变 ,从而将邻苯二酚粗酶固定在丝素蛋白膜中 ,制得邻苯一酚酶传感器。该传感器在pH6 0的KH2 PO4 -Na2 HPO4 工作介质中具有良好的响应特性 ,工作线性范围为 1 0× 10 - 5- 2 5× 10 - 4mol L ,检测限 5 0× 10 - 6 mol L ,响应时间 2min。酶经丝素蛋白的固定后具有较强的耐热性能 ,并能比较长时间保持酶的活性。该传感器在KH2 PO4 -Na2 HPO4 缓冲溶液的保存下 ,其使用寿命可达 2个月以上 相似文献