首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The venom glands and related muscles of sea snakes conform in their general structure to those of the terrestrial elapids. The venom gland, however, is smaller in size and the accessory gland is considerably reduced. A similar pattern is found in the Australian elapid Notechis. The musculus compressor glandulae is well developed in the sea snakes and in some species its posterior-medial portion runs uninterruptedly from the origin to the insertion of the muscle. This might be considered as a primitive condition suggesting an early divergence of the sea snakes from an ancestral elapid stock. Three species of sea snakes, Aipysurus eydouxi, Emydocephalus annulatus, and E. ijimae, feed on fish eggs and have very small, but still functioning, venom glands. The reduced accessory gland of the sea snakes is apparently connected with their aquatic environment, as a similar condition is found also in the elapine Boulengerina annulata which lives in large lakes of Central Africa. The similarity in structure of the venom gland between sea snakes and Notechis scutatus may point to a possible phylogenetic relationship between this group of Australian elapids and hydrophiine snakes.  相似文献   

2.
The venom gland of Crotalus viridis oreganus is composed of two discrete secretory regions: a small anterior portion, the accessory gland, and a much larger main gland. These two glands are joined by a short primary duct consisting of simple columnar secretory cells and basal horizontal cells. The main gland has at least four morphologically distinct cell types: secretory cells, the dominant cell of the gland, mitochondria-rich cells, horizontal cells, and “dark” cells. Scanning electron microscopy shows that the mitochondria-rich cells are recessed into pits of varying depth; these cells do not secrete. Horizontal cells may serve as secretory stem cells, and “dark” cells may be myoepithelial cells. The accessory gland contains at least six distinct cell types: mucosecretory cells with large mucous granules, mitochondria-rich cells with apical vesicles, mitochondria-rich cells with electron-dense secretory granules, mitochondria-rich cells with numerous cilia, horizontal cells, and “dark” cells. Mitochondria-rich cells with apical vesicles or cilia cover much of the apical surface of mucosecretory cells and these three cell types are found in the anterior distal tubules of the accessory gland. The posterior regions of the accessory gland lack mucosecretory cells and do not appear to secrete. Ciliated cells have not been noted previously in snake venom glands. Release of secretory products (venom) into the lumen of the main gland is by exocytosis of granules and by release of intact membrane-bound vesicles. Following venom extraction, main gland secretory and mitochondria-rich cells increase in height, and protein synthesis (as suggested by rough endoplasmic reticulum proliferation) increases dramatically. No new cell types or alterations in morphology were noted among glands taken from either adult or juvenile snakes, even though the venom of each is quite distinct. In general, the glands of C. v. oreganus share structural similarities with those of crotalids and viperids previously described.  相似文献   

3.
The venom glands of snakes of the families Elapidae and Viperidae are thought to have evolved from Duvernoy's gland of colubrid ancestors. In highly venomous snakes elements of the external adductor musculature of the jaw insert fibers directly onto the capsule of the venom gland. These muscles, upon contraction, cause release of contents by increasing intraglandular pressure. In Thamnophis sirtalis, a colubrid, there is no direct connection between Duvernoy's gland and the adductor musculature. The anatomical arrangement of the gland, skull, adductor muscles, and the integument is such that contraction of the muscles may facilitate emptying of the gland. This hypothesis was tested by electrical stimulation of the muscles, which resulted in significantly greater release of secretion than elicited by controls. The results suggest a possible early step in the evolution of a more intimate association between venom glands and adductor musculature in highly venomous snakes.  相似文献   

4.
Melanin deposits in the heads of both true vipers (Viperinae) and pit vipers (Crotalinae) are concentrated over the dorsal and dorsolateral aspects of the venom glands. This pigment may occur in any or all of six sites which include the epidermis, dermis, tissues covering the venom glands, and the interior of the glands themselves. The extreme localization of these melanin deposits suggests that they shield the venom glands from light. Calculations indicate that without such shielding the light energy penetrating the venom glands in the visible and ultraviolet portions of the solar spectrum would damage the venom-synthesizing apparatus and detoxify stored venom. Elapid and hydrophiid snakes have less dense pigment over the venom gland than vipers. Literature reports indicate that elapid venom is less sensitive to photodetoxification than is venom from vipers. Most colubrid snakes, including several with protein-secreting Duvernoy's glands, have little or no melanin associated with the glands. Venomous colubrids in the genera Ahaetulla, Dryophis, Leptophis, and Oxybelis have pigment over the glands as dense as that seen in vipers. Iridophores probably also shield venom glands from radiation. In puff adders and Gaboon vipers (Bitis) there appears to be an ontogenetic change in the shielding of the venom glands from melanocytes in young individuals to iridophores in adults.  相似文献   

5.
In this study the lingual and sublingual glands, the lingual stem and the epithelial surface of the protrusible secondary tongue were investigated by light, scanning and transmission electron microscopy. The quality of the secretions of the epithelia was characterized histochemically. The lingual epithelium is formed by superficial (pavement) and goblet cells and at the margin of the tongue pad are also regions covered by ciliated cells. On the dorsal part of the tongue there are goblet cells of type A with mainly acidic secretions and of type B containing neutral secretions. Most of the goblet cells on the ventral side of the tongue (hypoglottis) show a strong alcian blue/PAS positive reaction (type I) and some produce neutral secretions (type II). The glandular cells of the lingual gland react positively to alcian blue and PAS in the apical region of the gland. In contrast there is only alcian blue-positive staining in the basal part of the gland. The size and complexity of the inclusion bodies of the secretory granules increase in a basal direction. In addition, there are ciliated cells in the glandular epithelium. Although the epithelium of the lingual stem is thin, it is double-layered. The cell types observed in this region are identical to those of the ventral part of the protrusible tongue. At the margin of the sublingual gland are trough-like structures. In the center, tubular parts are observed. The cells of this gland are stain strongly with alcian blue (pH 1.0) mainly in the basal part of the gland. The results of this are compared to the tongue pad and the lingual gland of Salamandra salamandra and Ambystoma mexicanum.  相似文献   

6.
The mandibular gland of the Djungarian hamster was examined by light microscopy, and transmission and scanning electron microscopies. Its acinar cells reacted with periodic acid-Schiff (PAS) and were weakly stained with alcian blue (AB). There were intercellular canaliculi between the acinar cells. These cells therefore appeared to be seromucous. The acinar epithelium was composed of light cells containing various spherical secretory granules. The granular cells of the mandibular gland possessed many acidophilic granules exhibiting a positive reaction to PAS stain. They were frequently observed at the junction of the acini and intercalated ducts in all mandibular glands examined. All of these cells were light and contained secretory granules of varying size and density. The intercalated ducts consisted exclusively of light cells possessing a few round granules of high density in the apical region. The striated ducts were comprised of two portions--a secretory portion and a typical striated portion without secretory granules. The secretory portion consisted of light, dark and specifically light epithelial cells containing acidophilic granules, which exhibited a strongly positive PAS reaction. The epithelium of typically striated portions was composed of light and dark cells containing fine vacuoles in the apical region. The mandibular gland of the Djungarian hamster revealed no histological differences between sexes.  相似文献   

7.
Some hydrolytic enzymes are common to the pancreas, the mammaliansalivary glands and the snake venom glands. Phospholipase A,which is found in elapid and viperid venoms and in the mammalianpancreas, shows 29 common amino acid residues out of 118–125positions. Presynaptic neurotoxins and other venom toxins areusually composed of 2–3 units or subumts,one of whichis a phospholipase. The Vipera palaestinae two-component toxinretains its lethality when the enzyme is replaced by heterologousvenom phospholipases, but not by the pig pancreatic enzyme.This toxin is neutralized by a factor found in the blood serumof snakes, which binds to the phospholipase and inhibits itsactivity. The blood serum of snakes also neutralizes hemorrhaginsand inhibits the protease activity of the venom. It is hypothesizedthat the developing venom glands first produced enzymes thatwere already secreted by the pancreas and against which inhibitorswere present in the blood. These inhibitors facilitated theevolution of enzyme-based toxins by neutralizing any damagingsubstances that might have escaped from the venom glands.  相似文献   

8.
The microanatomy, fine structure and cytochemistry of scolex glands of Vitta riparia, Angularella beema and Trichocephaloidis megalocephala are examined by light and electron microscopy. Cytochemical tests include PAS, mercury bromphenol blue and performic acid-alcian blue for light microscopy and periodic acid-thiocarbohydrazide-OsO4 for electron microscopy. The scolex glands are organized in two spatially isolated syncytia, one located in the rostellum, the other in the rostellar sac. The cytoplasm of the gland syncytia is characterized by a high affinity for haematoxylin. Cytochemical tests indicate the presence of moderate amounts of glycoprotein in the glands. A specialized type of secretion—dark oval or ovoid bodies with diameter 0.3–0.5 μm are observed by EM in both the rostellum glands and the rostellar-sac glands of V. riparia and T. megalocephala , and in the rostellar-sac gland of A. beema . The rostellum gland of A. beema produces larger dark oval bodies measuring up to 0.9 μm. Lipid droplets are also observed in the glandular cytoplasm. Some tegumental cytons containing discoid bodies are found between the glandular perikarya. The glandular products and the lipid droplets are secreted via the rostellar tegument. © 1997 Published by Elsevier Science Ltd on behalf of The Royal Swedish Academy of Sciences.  相似文献   

9.
The reproductive processes of chondrichthyans are complex. Knowledge of the development and maturation of the oviducal gland is vital for understanding the reproductive biology of a species. This study represents the first contribution of this subject for skates. In the oviparous thornback ray, Raja clavata, oviducal gland development begins early in the developing stage with the formation of gland tubules and the distinct lamellae of each zone: club, papillary, baffle and terminal. Oviducal development is complete by the end of the developing stage when the storage and secretion of products is evident within the gland tubules of each zone. Periodic acid-Schiff and alcian blue histological staining showed that the secretory mucous cells of the club and papillary zones produce neutral and sulfated acid mucins. The last row of gland tubules of the papillary zone stains intensely for sulfated acid mucins. The baffle zone, which is responsible for the production of the egg capsule, represented 60–80% of the glandular zone of the oviducal gland. Sperm bundles were observed in the deeper recesses of the baffle zone during the maturation process, and during capsule extrusion, sperm were detected near the lumen. The terminal zone was composed of two types of gland tubules: serous (producing protein fibres) and mucous glands (producing sulfated acid mucins).  相似文献   

10.
In Tettigoniidae (Orthoptera), male reproductive accessory glands are involved in the construction of a two‐part spermatophore; one part, the spermatophylax, is devoid of sperm and considered a nuptial gift. The morphology, ultrastructure, and secretion protein content of the male reproductive accessory glands from Bolivarius siculus were investigated. Two main groups of gland tubules open into the ejaculatory duct: the “first‐order” glands, a number of large anterior tubules, and the “second‐order” glands, smaller and more numerous tubules positioned posteriorly. Along with a further subdivision of the gland tubules, we here describe for the first time an additional gland group, the intermediate tubules, which open between first and second‐order glands. The mesoderm‐derived epithelium of all glands is a single layer of microvillated cells, which can be either flattened or cylindric in the proximal or distal region of the same gland. Epithelial cells, very rich in RER and Golgi systems, produce secretions of both electron‐dense granules and globules or electron‐transparent material, discharged into the gland lumen by apocrine or merocrine mechanisms, respectively. With one exception, a unique electrophoresis protein profile was displayed by each of the gland types, paralleling their unique morphologies. To assess the contribution of different types of accessory glands to the construction of the spermatophore, the protein patterns of the gland secretions were compared with those of the extracts from the two parts of the spermatophore. All samples showed bands distributed in a wide range of molecular weight, including proteins of very low molecular mass. However, one major high molecular weight protein band (>180 kDa) is seen exclusively in extracts from the first‐order glands, and corresponds to an important protein component of the spermatophylax. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
We studied the morphology and histology of the oviducal gland (OG) in the brown ray (Raja miraletus) and the long‐nosed skate (Dipturus oxyrinchus) to understand its functional role in the reproductive strategy of these species. The external morphology of the gland was similar in both species, with lateral extensions like those found in other members of the Rajidae. Microscopic analysis showed a similar internal organization in both species. Immature and developing glands did not react to histochemical techniques. On reaching maturity, the OG had the largest width due to an increase in the production of secretory materials. In both species, the club zone of the gland showed a strong reaction to Periodic acid‐Schiff (PAS) and alcian blue (AB) stains, indicating production of neutral and sulfated acid mucins. The secretory material produced by the papillary zone varied greatly between the two species. Both displayed tubular glands similar to those observed in the club zone, but in D. oxyrinchus the region near the lumen was intensely PAS+, whereas the last row of tubules of the brown ray stained intensely for a mixture of neutral and sulfated mucins. The baffle zone was the most conspicuous and extensive segment of all OGs, and it did not react to PAS/AB. The terminal zone, which is responsible for production of hair filaments, differed between the two species in terms of composition and organization of serous and mucous glands. This difference probably is related to the different substrates in which they release the egg capsules. Individual sperm detected in the brown ray baffle lamellae could be the result of a recent mating, whereas their presence in the deep recesses of the baffle and in the terminal zone of the long‐nosed skate might indicate sperm storage. J. Morphol. 276:1392–1403, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
The major lacrimal gland of rhesus monkeys is impalpable within the fatty connective tissue of the upper lateral quadrant of the orbit. Acini of the lacrimal glands are composed of both sparsely and heavily granulated cells that histochemically resemble serous acinar cells of the submandibular salivary gland. The cytoplasmic granules are strongly periodic acid-Schiff (PAS)-positive, and some are also stained by alcian blue for acidic mucosubstances. The lacrimal gland has a simple duct system of intralobular ducts and interlobular excretory ducts. Lymphocytes and plasma cells are common in the periductal stroma. Major lacrimal glands of rhesus monkeys are suitable for comparative and correlative studies of lacrimal and salivary diseases and radiation responses.  相似文献   

13.
In eutherian mammals, the male reproductive accessory glands (RAGs) comprise the prostate, bulbourethral glands, ampullary glands, and the seminal vesicles. Their composition, anatomy and function vary widely between species. This study aimed to characterize histologically and compare the RAGs of bats. The RAGs of Noctilio albiventris (Noctilionidae) and Rhynchonycteris naso (Emballonuridae) were studied using anatomical and histological methods, and were reconstructed three dimensionally. The RAGs of N. albiventris and R. naso are composed of a compact glandular complex that surrounds the urethra and a pair of bulbourethral glands, which are extra‐abdominally located in the inguinal region. In both species, the glandular complex is composed of two well‐defined prostatic regions (ventral and dorsal). The ventral region showed an atypical epithelium (holocrine), where no obvious cellular limits were observed, and PAS‐positive secretion. The dorsal region had a pseudostratified cuboidal epithelium, with basal and secretory cells, and PAS‐negative secretion. Noctilio albiventris also had urethral glands (Littre glands) surrounding the urethra, however, R. naso had only muscles. Both species had bulbourethral glands, with simple columnar epithelium and PAS‐positive secretion. In conclusion, the RAGs of N. albiventris and R. naso comprised a pair of bulbourethral glands and an intra‐abdominal complex, composed of a prostate with two different regions (ventral and dorsal), while the ampullary glands and seminal vesicles were missing in both species. This morphology was more closely related between N. albiventris and R. naso, and to species of the family Phyllostomidae than to families Molossidae and Vespertilionidae. J. Morphol. 277:1459–1468, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
Morphological and histochemical studies of the cell types in the cephalic glands of Bothrops jararaca have been performed. It is concluded: 1) mucous cells are found in the salivary labial, accessory glands; mucous-serous cells are found in the salivary labial, accessory and Harderian glands; serous-mucous cells are found only in the venom gland; 2) neutral mucosubstances and protein were found in the salivary labial, venom, accessory and Harderian glands; 3) hyaluronic acid was detected in the Harderian gland; 4) of the to sulfated acid mucosubstances, only chondroitin sulfate B was detected in the salivary labial and accessory glands; 5) sialic acid was detected in the salivary labial, accessory and Harderian glands.  相似文献   

15.
Oviducal gland morphology, the microscopic organization of the terminal zone, and sperm storage were described in the female gummy shark (Mustelus antarcticus). Mustelus antarcticus is a nonplacental viviparous hound shark, which displays minimal histotrophy during embryonic development. The animals examined represented all stages of maturity and gestation. The oviducal gland was found to have the same fundamental zonation as in most chondrichthyans. Using recent terminology, the oviducal gland of chondrichthyans has an anterior club zone, followed by a papillary zone, both of which produce jelly that surrounds the egg, a baffle zone that elaborates the tertiary egg envelope and a terminal zone, where sperm storage occurs. Each zone is composed of simple tubular glands that connect to transverse grooves, which extend the full width of the gland. The exception is the terminal zone, which does not have transverse grooves but consists of individual tubules. The microscopic organization and histochemical nature of the zones display similar patterns to those of other chondrichthyan genera. Tubules of the terminal zone contain four types of cell: ciliated cells, alcian blue‐positive secretory cells, periodic acid‐Schiff and alcian blue‐negative secretory cells, and secretory columnar cells. These tubules end in recesses, the sperm storage tubules, which extend beyond the periphery of the baffle zone. Sperm were stored in the sperm storage tubules of all maturing and mature animals examined. Of note is the observation of stored sperm in an animal 1 year prior to first ovulation. Sperm were also observed throughout the uterine sphincter, body of the uterus, isthmus, and oviduct of maturing and mature animals, and in the uterine sphincter of an immature animal. These sperm represent immediately postcopulation aggregations of sperm and sperm in the process of migrating to the site of storage or to the site of fertilization. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
As part of a study on trichopteran silk secretion, the histology, histochemistry, and ultrastructure of the silk glands of two species of limnephilid trichopteran larvae, Pycnopsyche guttifer (Walk.) and Neophylax concinnus McL., were investigated. The silk glands consist of three anatomically distinct regions: a long, posterior silk-secreting region; a shorter, anterior conducting tube; and a terminal press/common duct. In Pycnopsyche, there is also a modified bulbous region between the secreting and conducting areas. Each anatomical region has a distinct cell type. There are two structurally and histochemically different components of the secretion in the glandular lumen: a core and a peripheral layer. Both components are produced all along the gland and are principally proteinaceous. However, the peripheral layer is also PAS and alcian blue (pH. 2.5) positive and shows β-metachromasia with toluidine blue (pH 3.5), indicating the presence of both neutral and acidic polysaccharides.  相似文献   

17.
The pharaoh cuttlefish, Sepia pharaonis, is an important cephalopod fishery species in southeastern Asia, with understudied reproductive physiology. The present study aimed to investigate the cellular characteristics of epithelial cells found in the nidamental glands (NGs) and accessory NGs (ANGs), as well as the structural connections between these two glands in mature female S. pharaonis. A histological analysis revealed two types of epithelial cells in NGs: Alcian blue‐positive, PAS‐negative mucosubstance‐secreting cells and eosinophilic, PAS‐positive granule‐secreting cells. Using transmission electron microscopy, three types of epithelial cells were identified: cells with electron‐dense granules, cells with electron‐lucent granules, and cells with both cilia and microvilli in the apex. Mature ANGs contain an abundance of tubular units composed of epithelial cells resting on a thin layer of basal lamina. Innervated muscle cells are tightly adhered to the basal lamina. In addition, we observed epithelial canalization of ANG tubules penetrating through the connective tissue linking NGs and the walls of the tubules in ANGs, which allows the contents of the ANG tubules to be transported to the NGs. Our results suggest that ANGs participate in the encapsulation of the ova via the same pathway as NGs, which provides an important basis for future studies on the mechanism of protection provided by NGs and ANGs during embryonic development in S. pharaonis.  相似文献   

18.
Each of the paired salivary glands of third instar larvae of the humpbacked fly Megaselia scalaris is a bag-like structure with a short neck region from which a single duct emerges. The two ducts form a common duct that empties into the ventral region of the pharynx near the mouthparts. The wall of the glands and ducts consists of a simple squamous epithelium that rests upon a connective tissue layer. Cells in the neck are less flattened than those found elsewhere. The basal surfaces of the cells are infolded most deeply in the neck and the least in the duct. The apical surfaces of the cells possess microvilli except in the duct where the apices of the cells are covered by a complex extracellular layer. This layer displays circularly arranged folds that accommodate a thread-like supportive structure resembling taenidial threads of tracheae. Elaborate junctional complexes are associated with the lateral surfaces of the cells. Elements of these complexes include a zonula adherens, a series of pleated septate desmosomes, and conventional desmosomes. The cytoplasm of the glandular cells is filled with RER and other organelles normally seen in cells that export proteins and mucosubstances. Secretory material found in the lumens of the glands reacts only moderately with the PAS procedure but more strongly with alcian blue and methods that demonstrate proteins. The nuclei of the glandular cells contain single large nucleoli and polytene chromosomes whose banding is rather indistinct. Treatment with EDTA produces detrimental effects on all of the foregoing ultrastructural features of the glands and ducts.  相似文献   

19.
《Journal of morphology》2017,278(6):791-800
African lungfish (Protopterus ) seem unique among osteognathostomes in possessing a potential vomeronasal organ homolog in form of accessory epithelial crypts within their nasal cavity. Many details regarding structural and functional properties of these crypts are still unexplored. In this study, we reinvestigate the issue and also present the first data on epithelial crypts in the South American lungfish Lepidosiren paradoxa . The nasal cavities of L. paradoxa and Protopterus annectens were studied using histology, scanning electron microscopy, and alcian blue and PAS staining. In both species, the epithelial crypts consist of a pseudostratified sensory epithelium and a monolayer of elongated glandular cells, in accordance with previously published data on Protopterus . In addition, we found a new second and anatomically distinct type of mucous cell within the duct leading into the crypt. These glandular duct cells are PAS positive, whereas the elongated glandular cells are stainable with alcian blue, suggesting distinct functions of their respective secretions. Furthermore, the two lungfish species show differently structured crypt sensory epithelia and external crypt morphology, with conspicuous bilaterally symmetrical stripes of ciliated cells in L. paradoxa . Taken together, our data suggest that stimulus transport into the crypts involves both ciliary movement and odorant binding mucus.  相似文献   

20.
Several secretory and nonsecretory enzymes were localized histochemically in the main venom gland of 13 viperid snakes. All secretory cells show the intracellular oxidative enzymes succinate dehydrogenase and monoamine oxidase. The granular reactions obtained for both enzymes resemble mitochondria in distribution. Distinctive cells with a very high succinate dehydrogenase activity are dispersed among the secretory cells of all species except Atractaspis. Nonspecific acid phosphatase activity is found in the supranuclear region of the secretory cells in species that do not secrete this enzyme and throughout the cytoplasm in snakes that secrete the enzyme. Nonspecific alkaline phosphatase activity occurs in the secretory cells of those snakes whose venom shows this activity. Leucine amino peptidase (aryl amidase) activity is found in the venom and in the secretory cells of all the species. In Vipera palaestinae both the venom and the secretory cells of the main venom gland contain nonspecific esterase, L-amino acid oxidase and phosphodiesterase activities. The localization of phosphodiesterase and L-amino acid oxidase do not show major differences between glands at different intervals from an initial milking. Adenosine-monophosphate phosphatase activity is localized in the supranuclear region of the secretory cells in the glands of Vipera palaestinae and Aspis cerastes. Its activity is found in the venom of Aspis only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号