首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fruit tissues of tomato (Lycopersicon esculentum Mill.) contain both photosynthetic and heterotrophic ferredoxin (FdA and FdE, respectively) isoproteins, irrespective of their photosynthetic competence, but we did not previously determine whether these proteins were colocalized in the same plastids. In isolated fruit chloroplasts and chromoplasts, both FdA and FdE were detected by immunoblotting. Colocalization of FdA and FdE in the same plastids was demonstrated using double-staining immunofluorescence microscopy. We also found that FdA and FdE were colocalized in fruit chloroplasts and chloroamyloplasts irrespective of sink status of the plastid. Immunoelectron microscopy demonstrated that FdA and FdE were randomly distributed within the plastid stroma. To investigate the significance of the heterotrophic Fd in fruit plastids, Glucose 6-phosphate dehydrogenase (G6PDH) activity was measured in isolated fruit and leaf plastids. Fruit chloroplasts and chromoplasts showed much higher G6PDH activity than did leaf chloroplasts, suggesting that high G6PDH activity is linked with FdE to maintain nonphotosynthetic production of reducing power. This result suggested that, despite their morphological resemblance, fruit chloroplasts are functionally different from their leaf counterparts.  相似文献   

2.
Four ferredoxin (Fd) fractions, namely, FdA-D were purified from the green sulfur bacterium Chlorobium tepidum. Their absorption spectra are typical of 2[4Fe-4S] cluster type Fds with peaks at about 385 and 280 nm and a shoulder at about 305 nm. The A(385)/A(280) ratios of the purified Fds were 0.76-0.80. Analysis of the N-terminal amino acid sequences of these Fds (15-25 residues) revealed that those of FdA and FdB completely agree with those deduced from the genes, fdx3 and fdx2, respectively, found in this bacterium (Chung and Bryant, personal communication). The N-terminal amino acid sequences of FdC and FdD (15 residues) were identical, and agree with that deduced from the gene fdx1 (Chung and Bryant, personal communication). The A(385) values of these Fds were unchanged when they were stored for a month at -80 degrees C under aerobic conditions and decreased by 10-15% when they were stored for 6 days at 4 degrees C under aerobic conditions, indicating that they are not extremely unstable. In the presence of Fd-NADP(+) reductase from spinach, and a purified reaction center (RC) preparation from C. tepidum composed of five kinds of polypeptides, these Fds supported the photoreduction of NADP(+) at room temperature with the following K(m) and V(max) (in micromol NADP(+) micromol BChl a(-1) h(-1)): FdA, 2.0 microm and 258; FdB, 0.49 microM and 304; FdC, 1.13 microM and 226; FdD, 0.5 microM and 242; spinach Fd, 0.54 microM and 183. The V(max) value of FdB was more than twice that previously reported for purified RC preparations from green sulfur bacteria.  相似文献   

3.
Zinc centers play a key role as important structure determinants in a variety of proteins including ferredoxins (Fd). Here, we exploit the availability of two highly similar ferredoxin isoforms from the thermophile Sulfolobus metallicus, which differ in the residues involved in coordinating a His/Asp zinc site that ties together the protein core with its N-terminal extension, to investigate the effect of the absence of this site on ferredoxin folding. The conformational properties of the zinc-containing (FdA) and zinc-lacking (FdB) isoforms were investigated using visible absorption and tryptophan fluorescence emission. Fluorescence quenching studies, together with comparative modeling and molecular dynamics simulations, indicate that the FdB N-terminal extension assumes a fold identical to that of the Zn(2+)-containing isoform. The thermal stability of the isoforms was investigated in a broad pH range (2 < pH < 10), and at physiological pH conditions, both proteins unfold above 100 degrees C. Surprisingly, the Zn(2+)-lacking isoform was always found to be more stable than its Zn(2+)-containing counterpart: a DeltaT(m) approximately 9 degrees C is determined at pH 7, a difference that becomes even more significant at extreme pH values, reaching a DeltaT(m) approximately 24 degrees C at pH 2 and 10. The contribution of the Zn(2+) site to ferredoxin stability was further resolved using selective metal chelators. During thermal unfolding, the zinc scavenger TPEN significantly lowers the T(m) in FdA ( approximately 10 degrees C), whereas it has no effect in FdB. This shows that the Zn(2+) site contributes to ferredoxin stability but that FdB has devised a structural strategy that accounts for an enhanced stability without using a metal cross-linker. An analysis of the FdB sequence and structural model leads us to propose that the higher stability of the zinc-containing ferredoxin results from van der Waals contacts formed between the residues that occupy the same spatial region where the zinc ligands are found in FdA. These favor the formation of a novel local stabilizing hydrophobic core and illustrate a strategy of natural fold design.  相似文献   

4.
5.
In higher plants, [2Fe-2S] ferredoxin (Fd) proteins are the unique electron acceptors from photosystem I (PSI). Fds are soluble, and distribute electrons to many enzymes, including Fd:NADP(H) reductase (FNR), for the photoreduction of NADP(+). In addition to well studied [2Fe-2S] Fd proteins, higher plants also possess genes for significantly different, as yet uncharacterized Fd proteins, with extended C termini (FdCs). Whether these FdC proteins function as photosynthetic electron transfer proteins is not known. We examined whether these proteins play a role as alternative electron acceptors at PSI, using quantitative RT-PCR to follow how their expression changes in response to acceptor limitation at PSI, in mutant Arabidopsis plants lacking 90-95% of photosynthetic [2Fe-2S] Fd. Expression of the gene encoding one FdC protein, FdC1, was identified as being strongly up-regulated. We confirmed that this protein was chloroplast localized and increased in abundance on PSI acceptor limitation. We purified the recombinant FdC1 protein, which exhibited a UV-visible spectrum consistent with a [2Fe-2S] cluster, confirmed by EPR analysis. Measurements of electron transfer show that FdC1 is capable of accepting electrons from PSI, but cannot support photoreduction of NADP(+). Whereas FdC1 was capable of electron transfer with FNR, redox potentiometry showed that it had a more positive redox potential than photosynthetic Fds by around 220 mV. These results indicate that FdC1 electron donation to FNR is prevented because it is thermodynamically unfavorable. Based on our data, we speculate that FdC1 has a specific function in conditions of acceptor limitation at PSI, and channels electrons away from NADP(+) photoreduction.  相似文献   

6.
Sucrose Synthase,Starch Accumulation,and Tomato Fruit Sink Strength   总被引:41,自引:1,他引:40       下载免费PDF全文
Wang F  Sanz A  Brenner ML  Smith A 《Plant physiology》1993,101(1):321-327
Contrasting evidence has accumulated regarding the role of acid invertase and sucrose synthase in tomato fruit sink establishment and maintenance. In this work the relationships among the activities of sucrose synthase and acid invertase, Lycopersicon esculentum Mill cv UC-82B fruit growth, and starch accumulation were analyzed in fruit at 0 to 39 d after anthesis. Sucrose synthase, but not acid invertase, was found to be positively correlated with tomato fruit relative growth rate and with starch content in the pericarp tissue. A similar association between sucrose synthase activity and starch accumulation was also evident in the basal portion of the stem. Heat-shock treatments, which inhibited the increase in sucrose synthase activity at the beginning of the light period and had no effect on acid invertase activity, were used to examine the importance of sucrose synthase in relation to sucrose metabolism and starch synthesis. After the heat-shock treatment, concomitantly with the suppressed sucrose synthase activity relative to the controls, there was a reduction in sucrose cleavage and starch accumulation. These data substantiate the conclusion that, during the early phases of tomato fruit development, sucrose synthase rather than acid invertase is the dominant enzyme in metabolizing imported sucrose, which in turn plays a part in regulating the import of sucrose into the fruit.  相似文献   

7.
Immature tomato fruit are characterized by a transient period of starch accumulation. Sucrose synthase (EC 2.4,1.13) and fructokinase (EC 2.7,1.4) are two of the initial enzymes in the sucrose to starch synthetic pathway. Both enzymes in tomato fruit are significantly inhibited by fructose at concentrations physiological to young tomato fruit. Compartmental analysis of immature fruit pericarp indicates that fructose is not specifically compartmentalized in the vacuole and that physiological cytosolic concentrations of fructose in young tomato fruit are above 30 m M . Such physiological levels of fructose significantly inhibit sucrose synthase cleavage activity as well as the activity of a partially purified fructokinase. These data suggest a mechanism of a coordinated, in vivo regulation of tomato sucrose synthase and fructokinase activity, which may be potentially limiting to starch accumulation in young tomato fruit.  相似文献   

8.
Two ferredoxin genes, fdA and fdB, from the extremely thermoacidophilic crenarchaeon Acidianus ambivalens have been sequenced; the sequences share 86% similarity. Whereas the deduced protein sequence of the ferredoxin FdA clearly contains a zinc-binding motif, the corresponding sequence of the FdB is devoid of this motif. Thus far, only the zinc-containing ferredoxin, FdA, from A. ambivalens has been chemically and functionally characterized from its native source. Using RT-PCR and Northern blot analysis, we show that both ferredoxins are expressed by A. ambivalens under either anaerobic or aerobic growth conditions. The zinc-free ferredoxin, FdB, was overexpressed in E. coli and purified to homogeneity. Using EPR spectroscopy, we could demonstrate that FdB contains one [3Fe-4S](1+/0) and one [4Fe-4S](2+/1+) cluster. The reduction potential of the [3Fe-4S](1+/0) cluster was determined as -235+/-10 mV, at pH 6.5, by EPR-monitored redox titration. The high melting temperature of 108+/-2 degrees C of FdB determined by CD spectroscopy reveals that it is not the binding of the Zn2+ that induces the extreme thermostability of these ferredoxins.  相似文献   

9.
Sulfite reductase (SiR) catalyzes the reduction of sulfite to sulfide in chloroplasts and root plastids using ferredoxin (Fd) as an electron donor. Using purified maize (Zea mays L.) SiR and isoproteins of Fd and Fd-NADP(+) reductase (FNR), we reconstituted illuminated thylakoid membrane- and NADPH-dependent sulfite reduction systems. Fd I and L-FNR were distributed in leaves and Fd III and R-FNR in roots. The stromal concentrations of SiR and Fd I were estimated at 1.2 and 37 microM, respectively. The molar ratio of Fd III to SiR in root plastids was approximately 3:1. Photoreduced Fd I and Fd III showed a comparable ability to donate electrons to SiR. In contrast, when being reduced with NADPH via FNRs, Fd III showed a several-fold higher activity than Fd I. Fd III and R-FNR showed the highest rate of sulfite reduction among all combinations tested. NADP(+) decreased the rate of sulfite reduction in a dose-dependent manner. These results demonstrate that the participation of Fd III and high NADPH/NADP(+) ratio are crucial for non-photosynthetic sulfite reduction. In accordance with this view, a cysteine-auxotrophic Escherichia coli mutant defective for NADPH-dependent SiR was rescued by co-expression of maize SiR with Fd III but not with Fd I.  相似文献   

10.
In higher plants ferredoxin (Fd):NADP(+) oxidoreductase (FNR) and Fd are each distributed in photosynthetic and non-photosynthetic organs as distinct isoproteins. We have cloned cDNAs for leaf FNR (L-FNR I and L-FNR II) and root FNR (R-FNR) from maize (Zea mays L.), and produced recombinant L-FNR I and R-FNR to study their enzymatic functions through kinetic and Fd-binding analyses. The K(m) value obtained by assay for a diaphorase activity indicated that R-FNR had a 10-fold higher affinity for NADPH than L-FNR I. When we assayed for NADPH-cytochrome c reductase activity using maize photosynthetic Fd (Fd I) and non-photosynthetic Fd (Fd III), the R-FNR showed a marked difference in affinity between these two Fd isoproteins; the K(m) for Fd III was 3.0 microM and that for Fd I was 29 microM. Consistent with this, the dissociation constant for the R-FNR:Fd III complex was 10-fold smaller than that of the R-FNR:Fd I complex. This differential binding capacity was confirmed by an affinity chromatography of R-FNR on Fd-sepharose with stronger binding to Fd III. L-FNR I showed no such differential interaction with Fd I and Fd III. These data demonstrated that R-FNR has the ability to discriminate between these two types of Fds. We propose that the stronger interaction of R-FNR with Fd III is crucial for an efficient electron flux of NADPH-FNR-Fd cascade, thus supporting Fd-dependent metabolism in non-photosynthetic organs.  相似文献   

11.
In developing tomato (Lycopersicon esculentum Mill.) fruit, starch levels reach a peak early in development with soluble sugars (hexoses) gradually increasing in concert with starch degradation. To determine the enzymic basis of this transient partitioning of carbon to starch, the activities of key carbohydrate-metabolizing enzymes were investigated in extracts from developing fruits of three varieties (cv VF145-7879, cv LA1563, and cv UC82B), differing in final soluble sugar accumulation. Of the enzymes analyzed, ADPglucose pyrophosphorylase and sucrose synthase levels were temporally correlated with the transient accumulation of starch, having highest activities in cv LA1563, the high soluble sugar accumulator. Of the starch-degrading enzymes, phosphorylase levels were fivefold higher than those of amylase, and these activities did not increase during the period of starch degradation. Fiften percent of the amylase activity and 45 to 60% of the phosphorylase activity was localized in the chloroplast in cv VF145-7879. These results suggest that starch degradation in tomato fruit is predominantly phosphorolytic. The results suggest that starch biosynthetic capacity, as determined by levels of ADPglucose pyrophosphorylase rather than starch degradative capacity, regulate the transient accumulation of starch that occurs early in tomato fruit development. The results also suggest that ADPglucose pyrophosphorylase and sucrose synthase levels correlated positively with soluble sugar accumulation in the three varieties examined.  相似文献   

12.
Several forms (isoproteins) of ferredoxin in roots, leaves, and green and red pericarps in tomato plants (Lycopersicon esculentum Mill.) were earlier identified on the basis of N-terminal amino acid sequence and chromatographic behavior (Green et al. 1991). In the present study, a large scale preparation made possible determination of the full length amino acid sequence of the two ferredoxins from leaves. The ferredoxins characteristic of fruit and root were sequenced from the amino terminus to the 30th residue or beyond. The leaf ferredoxins were confirmed to be expressed in pericarp of both green and red fruit. The ferredoxins characteristic of fruit and root appeared to be restricted to those tissue. The results extend earlier findings in demonstrating that ferredoxin occurs in the major organs of the tomato plant where it appears to function irrespective of photosynthetic competence.Abbreviations CBB Coomassie brilliant blue R-250 - Cm Carboxymethylated - Fd Ferredoxin - FNR ferredoxin-NADP+ oxidoreductase - FPLC Fast protein liquid chromatography - HPLC High performance liquid chromatography - rt root  相似文献   

13.
14.
The role of sucrose synthase (SuSy) in tomato fruit was studied in transgenic tomato (Lycopersicon esculentum) plants expressing an antisense fragment of fruit-specific SuSy RNA (TOMSSF) under the control of the cauliflower mosaic virus 35S promoter. Constitutive expression of the antisense RNA markedly inhibited SuSy activity in flowers and fruit pericarp tissues. However, inhibition was only slight in the endosperm and was undetectable in the embryo, shoot, petiole, and leaf tissues. The activity of sucrose phosphate synthase decreased in parallel with that of SuSy, but acid invertase activity did not increase in response to the reduced SuSy activity. The only effect on the carbohydrate content of young fruit was a slight reduction in starch accumulation. The in vitro sucrose import capacity of fruits was not reduced by SuSy inhibition at 23 days after anthesis, and the rate of starch synthesized from the imported sucrose was not lessened even when SuSy activity was decreased by 98%. However, the sucrose unloading capacity of 7-day-old fruit was substantially decreased in lines with low SuSy activity. In addition, the SuSy antisense fruit from the first week of flowering had a slower growth rate. A reduced fruit set, leading to markedly less fruit per plant at maturity, was observed for the plants with the least SuSy activity. These results suggest that SuSy participates in the control of sucrose import capacity of young tomato fruit, which is a determinant for fruit set and development.  相似文献   

15.
光质对番茄和莴苣幼苗生长及叶绿体超微结构的影响   总被引:6,自引:1,他引:6  
采用发光二极管(LED)精确调制不同光谱能量分布,以荧光灯光照为对照,研究光质对番茄和莴苣幼苗生长及叶绿体超微结构的影响.结果表明:红光下番茄、莴苣幼苗的可溶性糖、淀粉和碳水化合物含量均显著高于对照,叶片叶绿体中淀粉粒膨大显著;蓝光极显著抑制了番茄下胚轴伸长,显著提高了莴苣和番茄幼苗叶片叶绿素a和类胡萝卜素含量;红蓝光下莴苣幼苗叶片的可溶性糖、淀粉、碳水化合物、蔗糖含量和C/N均达到最大值且显著高于红光处理,番茄和莴苣幼苗的主根显著伸长,幼苗叶片中叶绿体形态正常,基粒增多,基质片层清晰,淀粉粒体积明显小于红光处理.光质对植物幼苗的光形态建成、生长、碳氮代谢及叶绿体发育有显著影响;红光下光合产物积累显著但运输受阻严重,在红光中添加适量蓝光更有利于莴苣幼苗的碳水化合物积累,并可促进幼苗根系生长,有利于同化产物输出.  相似文献   

16.
The amino acid sequences of ferredoxins (Fd A and Fd B) from Japanese taro (Colocasia esculenta Schott) were determined. They consisted of single polypeptide chains of 98 residues, and both Fds had molecular masses of 10700 and 10500, respectively. There was a 92% homology between the sequences of the isoproteins (Fd A and Fd B). These sequences were compared with those of the closely related plant Fds and their phylogenetic tree was constructed. Two ferredoxin isoproteins from Hawaiian taro (Colocasia esculenta Schott) were also isolated and their N-terminal sequences were determined to be identical to those of Japanese taro.  相似文献   

17.
18.
Guan HP  Janes HW 《Plant physiology》1991,96(3):922-927
Effects of light on carbohydrate levels and certain carbon metabolizing enzyme activities were studied during the early development of tomato (Lycopersicon esculentum) fruit. Sucrose levels were low and continued to decline during development and were unaffected by light. Starch was significantly greater in light. Invertase activity was similar in both light- and dark-grown fruit. Sucrose synthase activity was much lower than invertase and showed a slight decrease in light-grown fruit between days 21 and 28. Light-grown fruit also had higher ADP glucose pyrophosphorylase activity than dark-grown fruit, which was correlated with higher starch levels. The rapidly decreasing activity of ADP glucose pyrophosphorylase during early fruit development in the dark in conjunction with reduced starch levels and rates of accumulation indicates that ADP glucose pyrophosphorylase is crucial for carbon import and storage in tomato. The differential stimulation of ADP glucose pyrophosphorylase activity from light- and dark-grown tissue by 3-phosphoglycerate suggests that this enzyme may be allosterically altered by light.  相似文献   

19.
20.
The biochemical consequences of root hypoxia have been documented in many sink organs, but not extensively in fruit. Therefore, in the present study, the response to root hypoxia in tomato fruit (Solanum lycopersicum L.) was investigated at two developmental stages, during the cell division and the cell expansion phases. Our results showed that in dividing fruit, root hypoxia caused an exhaustion of carbon reserves and proteins. However, ammonium and major amino acids (glutamine, asparagine and γ–aminobutyric acid (GABA)) significantly accumulated. In expanding fruit, root hypoxia had no effect on soluble sugar, protein and glutamine contents, whereas starch content was significantly decreased, and asparagine and GABA contents slightly increased. Metabolite contents were well correlated with activities of the corresponding metabolising enzymes. Contrary to nitrogen metabolising enzymes (glutamine synthetase, asparagine synthetase and glutamate decraboxylase), the activities of enzymes involved in sugar metabolism (invertase, sucrose synthase, sucrose phosphate synthase and ADP glucose pyrophosphorylase) were significantly reduced by root hypoxia, in diving fruit. In expanding fruit, only a slight decrease in ADP glucose pyrophosphorylase and an increase in asparagine synthetase and glutamate decarboxylase activities were observed. Taken together, the present data revealed that the effects of root hypoxia are more pronounced in the youngest fruits as it is probably controlled by the relative sink strength of the fruit and by the global disturbance in plant functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号