首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
The actinin-associated LIM protein (ALP) subfamily has important functions in cell signal transduction, cell proliferation, and integration of cytoskeletal architecture. To detect their functions in pig skeletal muscle, we cloned and characterized the pig ALP subfamily genes, drew their genomic structure maps, and detected their tissue expression patterns. We identified a new spliced variant of PDLIM3 in pig skeletal muscle and named it as PDLIM3-4, which was only expressed in the heart and skeletal muscle. Our results showed that PDLIM3-4 was expressed in adult pig skeletal muscle with the highest expression level, and both PDLIM3-4 isoform and PDLIM4 had different expression profiles during the prenatal and postnatal stages of skeletal muscle development among the three pig breeds. These studies provide useful information for further research on the functions of pig ALP subfamily genes in skeletal muscle development.  相似文献   

2.
The mRNA differential display technique was performed to investigate the differences of gene expression in the longissimus dorsi muscle and backfat tissues from Chinese Meishan and Russian Large White pigs. One novel gene that was differentially expressed was identified through semiquantitative RT-PCR, and the cDNA complete sequence was then obtained using the rapid amplification of the cDNA ends (RACE) method. The cDNA sequence of this gene is not homologous to any of the known porcine genes. The sequence prediction analysis revealed that the open reading frame of this gene encodes a protein of 402 amino acids that contains the putative conserved transposase DDE domain, and further Blast analysis revealed that this protein has 100% homology with the Tn10 transposase from Oryza sativa, Serratia marcescens, and Salmonella, and, therefore, this gene can be defined as the swine Tn10 transposase gene. This novel porcine gene was finally assigned to Gene ID: 100049649. The RT-PCR analysis of the tissue expression profile was carried out using the tissue cDNAs of one Meishan pig as the templates, and the result indicated that this novel swine gene is moderately expressed in fat and weakly expressed in small intestine, liver, kidney, and spleen but almost not expressed in heart, ovary, muscle, and lung. Our experiment established the primary foundation for further research into the biological significance of swine Tn10 transposase gene.  相似文献   

3.
The mRNA differential display technique was performed to investigate the differences of gene expression in the longissimus dorsi muscle and backfat tissues from Chinese Meishan and Russian Large White pigs. One novel gene that was differentially expressed was identified through semi-quantitative RT-PCR and the cDNA complete sequence was then obtained using the rapid amplification of cDNA ends (RACE) method. The cDNA sequence of this gene is not homologous to any of the known porcine genes. The sequence prediction analysis revealed that the open reading frame of this gene encodes a protein of 402 amino acids that contains the putative conserved transposase DDE domain and further Blast analysis revealed that this protein has 100% homology with the Tn10 transposase from Oryza sativa, Serratia marcescens, and Salmonella, and therefore, this gene can be defined as the swine Tn10 transposase gene. This novel porcine gene was finally assigned to Gene ID: 100049649. The RT-PCR analysis of the tissue expression profile was carried out using the tissue cDNAs of one Meishan pig as the templates, and the result indicated that this novel swine gene is moderately expressed in fat, and weakly expressed in small intestine, liver, kidney, and spleen but almost not expressed in heart, ovary, muscle, and lung. Our experiment established the primary foundation for further research into the biological significance of swine Tn10 transposase gene.  相似文献   

4.
The mRNA differential display technique was performed to investigate the differences of gene expression in the longissimus muscle tissues from Meishan and Large White pigs. One novel mRNA that was differentially expressed was identified through semi-quantitative RT-PCR and the cDNA complete sequence was then obtained using the rapid amplification of cDNA ends (RACE) method. The nucleotide sequence of the mRNA is not homologous to any of the known porcine genes. Sequence prediction analysis revealed that the this mRNA is not protein-coding mRNA. Polymorphism analyses revealed that there was a C-T mutation on the position of 669 bp and PCR -Dra I-RFLP analyses revealed that Chinese indigenous pig breeds and exotic pig breeds displayed obvious genotype and allele frequency differences at this locus. Association analyses revealed that this polymorphic locus was significantly associated with the drip loss rate, skin percentage, meat color value (m.Longissimus Dorsi, LD), loin eye width, loin eye area, water holding capacity, carcass length, caul fat weight, intramuscular fat (m.Longissimus Dorsi, LD), lean meat weight, lean meat percentage, backfat thickness at buttock (< 0.05).  相似文献   

5.
6.
Echosides, isolated from Streptomyces sp. LZ35, represent a class of para-terphenyl natural products that display DNA topoisomerase I and IIα inhibitory activities. By analyzing the genome draft of strain LZ35, the ech gene cluster was identified to be responsible for the biosynthesis of echosides, which was further confirmed by gene disruption and HPLC analysis. Meanwhile, the biosynthetic pathway for echosides was proposed. Furthermore, the echA-gene, encoding a tri-domain nonribosomal peptide synthetase (NRPS)-like enzyme, was identified as a polyporic acid synthetase and biochemically characterized in vitro. This is the first study to our knowledge on the biochemical characterization of an Actinobacteria quinone synthetase, which accepts phenylpyruvic acid as a native substrate. Therefore, our results may help investigate the function of other NRPS-like enzymes in Actinobacteria.  相似文献   

7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号