首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The B–class of MADS box genes has been studied in a wide range of plant species, but has remained largely uncharacterized in legumes. Here we investigate the evolutionary fate of the duplicated AP3‐like genes of a legume species. To obtain insight into the extent to which B‐class MADS box gene functions are conserved or have diversified in legumes, we isolated and characterized the two members of the AP3 lineage in Medicago truncatula: MtNMH7 and MtTM6 (euAP3 and paleoAP3 genes, respectively). A non‐overlapping and complementary expression pattern of both genes was observed in petals and stamens. MtTM6 was expressed predominantly in the outer cell layers of both floral organs, and MtNMH7 in the inner cell layers of petals and stamens. Functional analyses by reverse genetics approaches (RNAi and Tnt1 mutagenesis) showed that the contribution of MtNMH7 to petal identity is more important than that of MtTM6, whereas MtTM6 plays a more important role in stamen identity than its paralog MtNMH7. Our results suggest that the M. truncatula AP3‐like genes have undergone a functional specialization process associated with complete partitioning of gene expression patterns of the ancestral gene lineage. We provide information regarding the similarities and differences in petal and stamen development among core eudicots.  相似文献   

3.
4.
Su K  Zhao S  Shan H  Kong H  Lu W  Theissen G  Chen Z  Meng Z 《The New phytologist》2008,178(3):544-558
In core eudicots, euAP3-type MADS-box genes encode a PISTILLATA (PI)-derived motif, as well as a C-terminal euAP3 motif that originated from a paleoAP3 motif of an ancestral APETALA3 (AP3)-like protein through a translational frameshift mutation. To determine the functional and evolutionary relevance of these motifs, a series of point mutation and domain-swap constructs were generated, involving CsAP3, a paleoAP3-type gene from the basal angiosperm Chloranthus spicatus encoding a truncated paleoAP3 motif, and AtAP3, a euAP3-type gene from the core eudicot Arabidopsis thaliana. The chimeric constructs were expressed in A. thaliana under the control of the AP3 promoter or the CaMV 35S promoter in an ap3 mutant or wild-type background, respectively. Significant recovery of AP3 function was obtained in both complementation and ectopic expression experiments whenever the region upstream of the C-terminal motifs (MIK region) from A. thaliana was taken, even when the PI-derived motif and the truncated paleoAP3 motif of CsAP3 substituted for the corresponding sequences from AtAP3. However, no or very weak complementation or gain-of-function was seen when the MIK region was from CsAP3. Our data suggest that changes in the MIK region rather than mutations in the C-terminal domain were of crucial importance for the evolution of the functional specificity of euAP3-type proteins in stamen and petal development.  相似文献   

5.
The field of evolutionary developmental biology can help address how morphological novelties evolve, a key question in evolutionary biology. In Arabidopsis thaliana, APETALA2 (AP2) plays a role in the development of key plant innovations including seeds, flowers, and fruits. AP2 belongs to the AP2/ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR family which has members in all viridiplantae, making it one of the oldest and most diverse gene lineages. One key subclade, present across vascular plants is the euAPETALA2 (euAP2) clade, whose founding member is AP2. We reconstructed the evolution of the euAP2 gene lineage in vascular plants to better understand its impact on the morphological evolution of plants, identifying seven major duplication events. We also performed spatiotemporal expression analyses of euAP2/TOE3 genes focusing on less explored vascular plant lineages, including ferns, gymnosperms, early diverging angiosperms and early diverging eudicots. Altogether, our data suggest that euAP2 genes originally contributed to spore and sporangium development, and were subsequently recruited to ovule, fruit and floral organ development. Finally, euAP2 protein sequences are highly conserved; therefore, changes in the role of euAP2 homologs during development are most likely due to changes in regulatory regions.  相似文献   

6.
Antirrhinum majus DEFICIENS (DEF) and Arabidopsis thaliana APETALA3 (AP3) MADS box proteins are required to specify petal and stamen identity. Sampling of DEF/AP3 homologs revealed two types of DEF/AP3 proteins, euAP3 and TOMATO MADS BOX GENE6 (TM6), within core eudicots, and we show functional divergence in Petunia hybrida euAP3 and TM6 proteins. Petunia DEF (also known as GREEN PETALS [GP]) is expressed mainly in whorls 2 and 3, and its expression pattern remains unchanged in a blind (bl) mutant background, in which the cadastral C-repression function in the perianth is impaired. Petunia TM6 functions as a B-class organ identity protein only in the determination of stamen identity. Atypically, Petunia TM6 is regulated like a C-class rather than a B-class gene, is expressed mainly in whorls 3 and 4, and is repressed by BL in the perianth, thereby preventing involvement in petal development. A promoter comparison between DEF and TM6 indicates an important change in regulatory elements during or after the duplication that resulted in euAP3- and TM6-type genes. Surprisingly, although TM6 normally is not involved in petal development, 35S-driven TM6 expression can restore petal development in a def (gp) mutant background. Finally, we isolated both euAP3 and TM6 genes from seven solanaceous species, suggesting that a dual euAP3/TM6 B-function system might be the rule in the Solanaceae.  相似文献   

7.
《Gene》2014,537(1):100-107
APETALA3 (AP3) homologs are involved in specifying petal and stamen identities in core eudicot model organisms. In order to investigate the functional conservation of AP3 homologs between core eudicots and basal angiosperm, we isolated and identified two AP3 homologs from Magnolia wufengensis, a woody basal angiosperm belonging to the family Magnoliaceae. Sequence and phylogenetic analyses revealed that both genes are clade members of the paleoAP3 lineage. Moreover, a highly conserved motif of paleoAP3 is found in the C-terminal regions of MAwuAP3_1/2 proteins, but the PI-derived motif, usually present in AP3/DEF-like lineage members, is missing. Semi-quantitative and real time PCR analyses showed that the expression of MAwuAP3_1/2 was restricted to tepals and stamens. However, the MAwuAP3_1 expression was maintained at a high level during the rapid increased in size of tepals and stamens, while MAwuAP3_2 mRNA was only detected at the early stage of tepal and stamen development. Furthermore, the expression of MAwuAP3_1/2 in transgenic Arabidopsis causes phenotypic changes which partly resemble those caused by ectopic expressions of the endogenous AP3 gene. Moreover, the 35S::MAwuAP3_1/2 transgenic Arabidopsis can be used partially to rescue the loss-of-function ap3 mutant (ap3-3) of Arabidopsis. These findings call for a more comprehensive understanding of the B-functional evolution from basal angiosperm to core eudicot clades.  相似文献   

8.
张娇  王旋  张良波  刘志雄 《植物研究》2020,40(2):266-273
为弄清甜荞(Fagopyrum esculentum Moench.)长雌蕊长雄蕊突变体lpls花和籽粒发育调控的分子机制,从甜荞中克隆出1个长1 788 bp的AP2同源基因的cDNA序列,命名为FaesAP2B(GenBank登录号为MK290847.1)。序列结构分析表明:FaesAP2B基因包含1个长1 380 bp的完整开放阅读框(Open Reading Frame,ORF),编码1个由459个氨基酸残基组成的AP2/ERF家族转录因子,该转录因子含有2个高度保守的AP2结构域,第1个AP2结构域前还存在1个由10个氨基酸残基组成的核定位信号区。用qPCR检测FaesAP2B基因在甜荞lpls突变体根、茎、幼叶、花被片、雄蕊、雌蕊以及发育4 d的果实共7种器官中表达的组织特异性显示:FaesAP2B在甜荞突变体lpls营养组织和生殖结构中均有表达,但其在花器官和果实等生殖结构中的表达量明显高于营养组织,且在雄蕊中的表达量最高,极显著高于其在其他6种组织中的表达量(LSD,P<0.01),同时,FaesAP2B在花被片、雌蕊和发育4 d的果实中的表达量均极显著高于其在根、茎和叶等营养器官中的表达量(LSD,P<0.01),但该基因在其根、茎、叶间的表达量无显著性差异。推测该基因可能主要参与调控甜荞lpls突变体花和果实的发育。  相似文献   

9.
In the model species Arabidopsis thaliana, the floral homeotic C-class gene AGAMOUS (AG) specifies reproductive organ (stamen and carpels) identity and floral meristem determinacy. Gene function analyses in other core eudicots species reveal functional conservation, subfunctionalization and function switch of the C-lineage in this clade. To identify the possible roles of AG-like genes in regulating floral development in distylous species with dimorphic flowers (pin and thrum) and the C function evolution, we isolated and identified an AG ortholog from Fagopyrum esculentum (buckwheat, Family Polygonaceae), an early diverging species of core eudicots preceding the rosids-asterids split. Protein sequence alignment and phylogenetic analysis grouped FaesAG into the euAG lineage. Expression analysis suggested that FaesAG expressed exclusively in developing stamens and gynoecium of pin and thrum flowers. Moreover, FaesAG expression reached a high level in both pin and thrum flowers at the time when the stamens were undergoing rapidly increased in size and microspore mother cells were in meiosis. FaesAG was able to substitute for the endogenous AG gene in specifying stamen and carpel identity and in an Arabidopsis ag-1 mutant. Ectopic expression of FaesAG led to very early flowering, and produced a misshapen inflorescence and abnormal flowers in which sepals had converted into carpels and petals were converted to stamens. Our results confirmed establishment of the complete C-function of the AG orthologous gene preceding the rosids-asterids split, despite the distinct floral traits present in early- and late-diverging lineages of core eudicot angiosperms.  相似文献   

10.
Several MADS box gene lineages involved in flower development have undergone duplications that correlate with the diversification of large groups of flowering plants. In the APETALA1 gene lineage, a major duplication coincides with the origin of the core eudicots, resulting in the euFUL and the euAP1 clades. Arabidopsis FRUITFULL (FUL) and APETALA1 (AP1) function redundantly in specifying floral meristem identity but function independently in sepal and petal identity (AP1) and in proper fruit development and determinacy (FUL). Many of these functions are largely conserved in other core eudicot euAP1 and euFUL genes, but notably, the role of APETALA1 as an "A-function" (sepal and petal identity) gene is thought to be Brassicaceae specific. Understanding how functional divergence of the core eudicot duplicates occurred requires a careful examination of the function of preduplication (FUL-like) genes. Using virus-induced gene silencing, we show that FUL-like genes in opium poppy (Papaver somniferum) and California poppy (Eschscholzia californica) function in axillary meristem growth and in floral meristem and sepal identity and that they also play a key role in fruit development. Interestingly, in opium poppy, these genes also control flowering time and petal identity, suggesting that AP1/FUL homologs might have been independently recruited in petal identity. Because the FUL-like gene functional repertoire encompasses all roles previously described for the core eudicot euAP1 and euFUL genes, we postulate subfunctionalization as the functional outcome after the major AP1/FUL gene lineage duplication event.  相似文献   

11.
12.

Background and Aims

Bisexual flowers of Carica papaya range from highly regular flowers to morphs with various fusions of stamens to the ovary. Arabidopsis thaliana sup1 mutants have carpels replaced by chimeric carpel–stamen structures. Comparative analysis of stamen to carpel conversions in the two different plant systems was used to understand the stage and origin of carpeloidy when derived from stamen tissues, and consequently to understand how carpeloidy contributes to innovations in flower evolution.

Methods

Floral development of bisexual flowers of Carica was studied by scanning electron microscopy and was compared with teratological sup mutants of A. thaliana.

Key Results

In Carica development of bisexual flowers was similar to wild (unisexual) forms up to locule initiation. Feminization ranges from fusion of stamen tissue to the gynoecium to complete carpeloidy of antepetalous stamens. In A. thaliana, partial stamen feminization occurs exclusively at the flower apex, with normal stamens forming at the periphery. Such transformations take place relatively late in development, indicating strong developmental plasticity of most stamen tissues. These results are compared with evo-devo theories on flower bisexuality, as derived from unisexual ancestors. The Arabidopsis data highlight possible early evolutionary events in the acquisition of bisexuality by a patchy transformation of stamen parts into female parts linked to a flower axis-position effect. The Carica results highlight tissue-fusion mechanisms in angiosperms leading to carpeloidy once bisexual flowers have evolved.

Conclusions

We show two different developmental routes leading to stamen to carpel conversions by late re-specification. The process may be a fundamental aspect of flower development that is hidden in most instances by developmental homeostasis.  相似文献   

13.
本研究采用同源克隆和RACE技术,从甜荞(Fagopyrum esculentum Moench.)品种'西农9976'中分离出调控花器官发育的FaesAP2基因,该基因序列全长1668 bp,包含1个长为1374 bp的完整开放阅读框,共编码457个氨基酸。序列比对以及系统发育分析结果发现,FaesAP2蛋白拥有2个高度保守的AP2(APETALA2)结构域,在第1个AP2结构域前端有1段由10个氨基酸残基组成的高度保守的核定位信号区;系统发育分析显示其与拟南芥(Arabidopsis thaliana(L.) Heynh.) AP2转录因子的亲缘关系较近。基因表达模式分析表明,该基因在甜荞pin型和thrum型花的雄蕊和雌蕊中有明显的表达,但在幼叶和花被片中不表达,且其表达量在2种类型花不同发育时期呈现明显的变化,均在花药迅速膨大期达到最高值,因此推测该基因在甜荞花发育过程中可能参与了花器官发育的调控。  相似文献   

14.
In both Antirrhinum (Antirrhinum majus) and Arabidopsis (Arabidopsis thaliana), the floral B-function, which specifies petal and stamen development, is embedded in a heterodimer consisting of one DEFICIENS (DEF)/APETALA3 (AP3)-like and one GLOBOSA (GLO)/PISTILLATA (PI)-like MADS box protein. Here, we demonstrate that gene duplications in both the DEF/AP3 and GLO/PI lineages in Petunia hybrida (petunia) have led to a functional diversification of their respective members, which is reflected by partner specificity and whorl-specific functions among these proteins. Previously, it has been shown that mutations in PhDEF (formerly known as GREEN PETALS) only affect petal development. We have isolated insertion alleles for PhGLO1 (FLORAL BINDING PROTEIN1) and PhGLO2 (PETUNIA MADS BOX GENE2) and demonstrate unique and redundant properties of PhDEF, PhGLO1, and PhGLO2. Besides a full homeotic conversion of petals to sepals and of stamens to carpels as observed in phglo1 phglo2 and phdef phglo2 flowers, we found that gene dosage effects for several mutant combinations cause qualitative and quantitative changes in whorl 2 and 3 meristem fate, and we show that the PHDEF/PHGLO1 heterodimer controls the fusion of the stamen filaments with the petal tube. Nevertheless, when the activity of PhDEF, PhGLO1, and PhGLO2 are considered jointly, they basically appear to function as DEF/GLO does in Antirrhinum and to a lesser extent as AP3/PI in Arabidopsis. By contrast, our data suggest that the function of the fourth B-class MADS box member, the paleoAP3-type PETUNIA HYBRIDA TM6 (PhTM6) gene, differs significantly from the known euAP3-type DEF/AP3-like proteins; PhTM6 is mainly expressed in the developing stamens and ovary of wild-type flowers, whereas its expression level is upregulated in whorls 1 and 2 of an A-function floral mutant; PhTM6 is most likely not involved in petal development. The latter is consistent with the hypothesis that the evolutionary origin of the higher eudicot petal structure coincided with the appearance of the euAP3-type MADS box genes.  相似文献   

15.
16.
17.
APETALA3(AP3)/DEFICIENS(DEF)和PISTILLATA(PI)/GLOBOSA(GLO)为植物花器官发育B类基因,控制双子叶植物花瓣和雄蕊的发育,它们属于MADS-box基因家族,编码转录因子,这些基因的突变能导致花瓣转变为萼片,雄蕊转变为心皮。近年来已经在多种植物中克隆到了AP3/DEF和PI/GLO基因,AP3/DEF和PI/GLO基因在拟南芥中只在花器官中表达,而在玉米等植物维管束、叶片等组织中也有表达。现对有关AP3/DEF和PI/GLO基因表达及其在植物系统发育学研究方面的进展进行综述。  相似文献   

18.
19.
Floral initiation and development of Hedysarum varium, Onobrychis melanotricha and Alhagi persarum was studied using epi-illumination light-microscopy techniques. The studied species belong to the tribe Hedysareae of the inverted repeat loss clade (IRLC clade), which is characterized by missing the large inverted repeat in the chloroplast genome. The main aim of our study was to determine developmental bases for similarities and differences among the three taxa and to verify the position of Alhagi relative to other genera of the IRLC clade. According to our observations, bracteoles are missing in Onobrychis melanotricha, but are present in the other two species. All three species share unidirectional sepal initiation starting with a median abaxial sepal and bidirectional petal initiation. Stamen initiation is unidirectional in all except in the outer stamen whorl of Hedysarum varium, where it is bidirectional. An important ontogenetic feature in O. melanotricha is the existence of five common primordia, which give rise to petal and stamen primordia. Although in H. varium and O. melanotricha common primordia are observed at some stages in floral organ initiations, in Alhagi all organs are initiated separately. Moreover, overlap in time of floral organs initiation occurs in H. varium and O. melanotricha, but not in A. persarum. The carpel initiates concurrently with the petal primordia in all. It might be presumed that Alhagi is primitive in relation to the other studied Hedysareae taxa, due to the presence of bracteoles, the absence of common primordia, and the lack of overlap in time of different organ initiations.  相似文献   

20.
The class IV Homeodomain-leucine zipper (HD-ZIP IV) gene family includes several genes that are functionally significant in epidermal development. Our recent study revealed that double mutants of the epidermis-expressed HD-ZIP IV members, PROTODERMAL FACTOR2 (PDF2) in combination with some HOMEODOMAIN GLABROUS (HDG, pronounced “hedge”) genes, affect stamen development and specification of petal and stamen identity, possibly in a non cell-autonomous manner. However, the effect of the pdf2 mutations on the floral development was largely different depending on T-DNA insertion locations: pdf2–1 hdg flowers exhibited homeotic conversion of petals and stamens, while pdf2–2 hdg flowers had only a reduced number of stamens. Here, we used 2 additional pdf2 alleles to make double mutants and found that their floral phenotypes were rather similar to those of pdf2–2 hdg. The allele-specific effect caused by pdf2–1, which carries a T-DNA in a steroidogenic acute regulatory protein-related lipid transfer (START) domain-encoding region, suggests the importance of the START domain in proper function of HD-ZIP IV proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号