首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Irisin is a product of fibronectin type III domain-containing protein 5 (FNDC5) and plays an important role in energy homeostasis. In this study, we aimed to determine effects of intracerebroventricular administration of irisin on the hypothalamus–pituitary–gonadal axis by molecular, biochemical, and morphological findings. Fourty male Wistar-Albino rats were used and divided into four groups including control, sham (vehicle), 10, and 100 nM irisin infused groups (n = 10). Hypothalamic gonadotropin releasing hormone (GnRH) level and serum luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone levels were determined. Testicular tissue histology and spermiogram analysis were also performed. Both irisin concentrations significantly reduced hypothalamic GnRH messenger RNA (mRNA) and protein levels (p < 0.05). It was found that serum LH, FSH, and testosterone levels and Sertoli and Leydig cell numbers were decreased by irisin administration (p < 0.05). In addition, irisin administration reduced sperm density and mobility (p < 0.05). However, it did not cause any change in testicular and epididymis weights and tubular diameter. Our results reveal that irisin can play a role in the central regulation of reproductive behavior and also reduces testosterone levels by suppressing LH and FSH secretion. These results suggest that the discovery of irisin receptor antagonists may be beneficial in the treatment of infertility.  相似文献   

2.
People on a diet to lose weight may be at risk of reproductive failure. To investigate the effects of nutrient restriction on reproductive function and the underlying mechanism, changes of reproductive traits, hormone secretions and gene expressions in hypothalamus–pituitary–gonadal axis were examined in postpubertal gilts at anestrus induced by nutrient restriction. Gilts having experienced two estrus cycles were fed a normal (CON, 2.86 kg/d) or nutrient restricted (NR, 1 kg/d) food regimens to expect anestrus. NR gilts experienced another three estrus cycles, but did not express estrus symptoms at the anticipated fourth estrus. Blood samples were collected at 5 days’ interval for consecutive three times for measurement of hormone concentrations at the 23th day of the fourth estrus cycle. Individual progesterone concentrations of NR gilts from three consecutive blood samples were below 1.0 ng/mL versus 2.0 ng/mL in CON gilts, which was considered anestrus. NR gilts had impaired development of reproductive tract characterized by absence of large follicles (diameter ≥ 6 mm), decreased number of corepus lutea and atrophy of uterus and ovary tissues. Circulating concentrations of IGF-I, kisspeptin, estradiol, progesterone and leptin were significantly lower in NR gilts than that in CON gilts. Nutrient restriction down-regulated gene expressions of kiss-1, G-protein coupled protein 54, gonadotropin-releasing hormone, estrogen receptor α, progesterone receptor, leptin receptor, follicle-stimulating hormone and luteinizing hormone and insulin-like growth factor I in hypothalamus–pituitary–gonadal axis of gilts. Collectively, nutrient restriction resulted in impairment of reproductive function and changes of hormone secretions and gene expressions in hypothalamus–pituitary–gonadal axis, which shed light on the underlying mechanism by which nutrient restriction influenced reproductive function.  相似文献   

3.
4.
The vertebrate hypothalamic–pituitary axis (HP) is the main link between the central nervous system and endocrine system. Although several signal pathways and regulatory genes have been implicated in adenohypophysis ontogenesis, little is known about hypothalamic–neurohypophysial development or when the HP matures and becomes functional. To identify markers of the HP, we constructed subtractive cDNA libraries between adult zebrafish hypothalamus and pituitary. We identified previously published genes, ESTs and novel zebrafish genes, some of which were predicted by genomic database analysis. We also analyzed expression patterns of these genes and found that several are expressed in the embryonic and larval hypothalamus, neurohypophysis, and/or adenohypophysis. Expression at these stages makes these genes useful markers to study HP maturation and function.  相似文献   

5.
This paper concerns ODE modeling of the hypothalamic–pituitary– adrenal axis (HPA axis) using an analytical and numerical approach, combined with biological knowledge regarding physiological mechanisms and parameters. The three hormones, CRH, ACTH, and cortisol, which interact in the HPA axis are modeled as a system of three coupled, nonlinear differential equations. Experimental data shows the circadian as well as the ultradian rhythm. This paper focuses on the ultradian rhythm. The ultradian rhythm can mathematically be explained by oscillating solutions. Oscillating solutions to an ODE emerges from an unstable fixed point with complex eigenvalues with a positive real parts and a non-zero imaginary parts. The first part of the paper describes the general considerations to be obeyed for a mathematical model of the HPA axis. In this paper we only include the most widely accepted mechanisms that influence the dynamics of the HPA axis, i.e. a negative feedback from cortisol on CRH and ACTH. Therefore we term our model the minimal model. The minimal model, encompasses a wide class of different realizations, obeying only a few physiologically reasonable demands. The results include the existence of a trapping region guaranteeing that concentrations do not become negative or tend to infinity. Furthermore, this treatment guarantees the existence of a unique fixed point. A change in local stability of the fixed point, from stable to unstable, implies a Hopf bifurcation; thereby, oscillating solutions may emerge from the model. Sufficient criteria for local stability of the fixed point, and an easily applicable sufficient criteria guaranteeing global stability of the fixed point, is formulated. If the latter is fulfilled, ultradian rhythm is an impossible outcome of the minimal model and all realizations thereof. The second part of the paper concerns a specific realization of the minimal model in which feedback functions are built explicitly using receptor dynamics. Using physiologically reasonable parameter values, along with the results of the general case, it is demonstrated that un-physiological values of the parameters are needed in order to achieve local instability of the fixed point. Small changes in physiologically relevant parameters cause the system to be globally stable using the analytical criteria. All simulations show a globally stable fixed point, ruling out periodic solutions even when an investigation of the ‘worst case parameters’ is performed.  相似文献   

6.
7.
Somatostatin-14 influences pituitary–ovarian axis in peripubertal rats   总被引:1,自引:1,他引:0  
The effects of multiple somatostatin (SRIH-14) administration on the pituitary-ovarian axis were examined in peripubertal rats. Female Wistar rats received subcutaneously, two daily doses of 20 mug SRIH-14 per 100 g body weight (b.w.) for five consecutive days (from the 33rd to the 37th day of life). Follicle-stimulating (FSH), luteinizing (LH) and somatotropic (GH) cells were examined by the peroxidase-anti-peroxidase immunocytochemical method. Changes in cell volumes, volume densities and number per unit area (mm(2)) of FSH-, LH- and GH-immunoreactive cells were evaluated by stereology and morphometry. Serum FSH and LH levels were determined by RIA. Ovaries were analyzed by simple point counting of follicles. The volumes and volume densities of FSH-, LH- and GH-immunoreactive cells were significantly decreased while their numbers per mm(2) remained unchanged. SRIH-14 induced a significant decrease in serum FSH and LH levels. In the ovary, SRIH-14 induced an increase in the number of primordial follicles, followed by a reduction in the number of small healthy growing follicles and absence of preovulatory follicles. The number of atretic follicles was unchanged. We concluded that treatment with SRIH-14 during the peripubertal period markedly inhibited pituitary FSH, LH and GH cells. In the ovary, SRIH-14 acted by inhibiting folliculogenesis without affecting atretic processes.  相似文献   

8.
Alarin is a newly identified member of the galanin family of peptides. Galanin has been shown to exert regulatory effects on depression. Similar to galanin in distribution, alarin is also expressed in the medial amygdala and hypothalamus, i.e., regions interrelated with depression. However, it remains a puzzle whether alarin is involved in depression. Accordingly, we established the depression-like mouse model using behavioral tests to ascertain the possible involvement of alarin, with fluoxetine as a positive control. With the positive antidepressant-like effects of alarin, we further examined its relationship to HPA axis activity and brain-derived neurotrophic factor (BDNF) levels in different brain areas in a chronic unpredictable mild stress (CUMS) paradigm. In the acute studies, alarin produced a dose-related reduction in the immobility duration in tail suspension test (TST) in mice. In the open-field test, intracerebroventricular (i.c.v.) injection of alarin (1.0 nmol) did not impair locomotion or motor coordination in the treated mice. In the CUMS paradigm, alarin administration (1.0 nmol, i.c.v.) significantly improved murine behaviors (FST and locomotor activity), which was associated with a decrease in corticotropin-releasing hormone (CRH) mRNA levels in the hypothalamus, as well as a decline in serum levels of CRH, adrenocorticotropic hormone (ACTH) and corticosterone (CORT), all of which are key hormones of the HPA axis. Furthermore, alarin upregulated BDNF mRNA levels in the prefrontal cortex and hippocampus. These findings suggest that alarin may potentiate the development of new antidepressants, which would be further secured with the identification of its receptor(s).  相似文献   

9.
10.
Changes in activity of the hypothalamic–pituitary–adrenal (HPA) axis were examined in adult, prenatally stressed male rats in the experimental depression model of ‘learned helplessness’. It was shown that in males descending from intact mothers a depressive-like state was accompanied by an increase in activity of the entire HPA axis. Namely, expression of corticotropin-releasing hormone (CRH) in the hypothalamic paraventricular nucleus (PVN) increased coupled to a rise in plasma levels of ACTH and corticosterone as well as in adrenal weight. At the same time, in males born to mothers who suffered stress during the last week of pregnancy a decrease was detected in activity both of the central (hypothalamus) and peripheral (adrenal cortex) parts of this regulatory hormonal axis, analogous to that we revealed previously in the ‘stress–restress’ experimental model. It is concluded that prenatal stress modifies the sensitivity of animals to inescapable intense stress impacts, as manifested in the specific pattern of HPA axis activity after stressing.  相似文献   

11.
12.
The upper leaf sheath of rice (Oryza sativa L.) serves as a temporary starch sink before heading, subsequently becoming a carbon source tissue to the growing panicle at the post-heading stage. The time of sink–source transition in upper leaf sheaths is highly correlated to the panicle exsertion. Here, we found that the expression profiles of starch synthesis genes such as ADP-glucose pyrophosphorylase large subunit 2, granule-bound starch synthase II, soluble starch synthase I, starch branching enzyme (SBE) I, SBEIII, and SBEIV were highly correlated with starch content changes during the heading period in the second leaf sheath below the flag leaf. In addition, the α-amylase2A and β-amylase were considered as major genes that were in charge of starch degradation at the post-heading period. Of the five sucrose transporter (OsSUT) genes, OsSUT1 and OsSUT4 appeared to play an important role in sucrose loading into the phloem of source leaf sheaths. Moreover, the microarray-based data implied that the dominant processes associated with functional leaf sheath transition from sink to source were carbohydrate metabolism and the translocation of the carbon and nitrogen sources and inorganic phosphate.  相似文献   

13.
In songbirds, developmental stress affects song learning and production. Altered hypothalamic–pituitary–adrenal (HPA) axis function resulting in elevated corticosterone (CORT) may contribute to this effect. We examined whether developmental conditions affected the association between adult song and HPA axis function, and whether nutritional stress before and after nutritional independence has distinct effects on song learning and/or vocal performance. Zebra finches (Taeniopygia guttata) were raised in consistently high (HH) or low (LL) food conditions until post-hatch day (PHD) 62, or were switched from high to low conditions (HL) or vice versa (LH) at PHD 34. Song was recorded in adulthood. We assessed the response of CORT to handling during development and to dexamethasone (DEX) and adrenocorticotropic hormone (ACTH) challenges during adulthood. Song learning and vocal performance were not affected by nutritional stress at either developmental stage. Nutritional stress elevated baseline CORT during development. Nutritional stress also increased rate of CORT secretion in birds that experienced stress only in the juvenile phase (HL group). Birds in the LL group had lower CORT levels after injection of ACTH compared to the other groups, however there was no effect of nutritional stress on the response to DEX. Thus, our findings indicate that developmental stress can affect HPA function without concurrently affecting song.  相似文献   

14.
The kisspeptin (Kp, Kp-54, metastin)/KISS1R system plays crucial roles in regulating the secretion of gonadotropin-releasing hormone. Continuous administration of nonapeptide Kp analogs caused plasma testosterone depletion, whereas bolus administration caused strong plasma testosterone elevation in male rats. To develop a new class of small peptide drugs, we focused on stepwise N-terminal truncation of Kp analogs and discovered potent pentapeptide analogs. Benzoyl-Phe-azaGly-Leu-Arg(Me)-Trp-NH2 (16) exhibited high agonist activity for KISS1R and excellent metabolic stability in rat serum. A single injection of a 4-pyridyl analog (19) at the N-terminus of 16 into male Sprague Dawley rats caused a robust increase in plasma luteinizing hormone levels, but unlike continuous administration of nonapeptide Kp analogs, continuous administration of 19 maintained moderate testosterone levels in rats. These results indicated that small peptide drugs can be successfully developed for treating sex hormone deficiency.  相似文献   

15.
Although normally folic acid is given during pregnancy, presumably to prevent neural tube defects, the mechanisms of this protection are unknown. More importantly it is unclear whether folic acid has other function during development. It is known that folic acid re-methylates homocysteine (Hcy) to methionine by methylene tetrahydrofolate reductase-dependent pathways. Folic acid also generates high-energy phosphates, behaves as an antioxidant and improves nitric oxide (NO) production by endothelial NO synthase. Interestingly, during epigenetic modification, methylation of DNA/RNA generate homocysteine unequivocally. The enhanced overexpression of methyl transferase lead to increased yield of Hcy. The accumulation of Hcy causes vascular dysfunction, reduces perfusion in the muscles thereby causing musculopathy. Another interesting fact is that children with severe hyperhomocysteinaemia (HHcy) have skeletal deformities, and do not live past teenage. HHcy is also associated with the progeria syndrome. Epilepsy is primarily caused by inhibition of gamma-amino-butyric-acid (GABA) receptor, an inhibitory neurotransmitter in the neuronal synapse. Folate deficiency leads to HHcy which then competes with GABA for binding on the GABA receptors. With so many genetic and clinical manifestations associated with folate deficiency, we propose that folate deficiency induces epigenetic alterations in the genes and thereby results in disease.  相似文献   

16.
17.
Increasing evidence suggests that the detrimental effects of glucocorticoid (GC) hypersecretion occur by activation of the hypothalamic-pituitary-adrenal (HPA) axis in several human pathologies, including obesity, Alzheimer's disease, AIDS dementia, and depression. The different patterns of response by the HPA axis during chronic activation are an important consideration in selecting an animal model to assess HPA axis function in a particular disorder. This article will discuss how chronic HPA axis activation and GC hypersecretion affect hippocampal function and contribute to the development of obesity. In the brain, the hippocampus has the highest concentration of GC receptors. Chronic stress or corticosterone treatment induces neuropathological alterations, such as dendritic atrophy in hippocampal neurons, which are paralleled by cognitive deficits. Excitatory amino acid (EAA) neurotransmission has been implicated in chronic HPA axis activation. EAAs play a major role in neuroendocrine regulation. Hippocampal dendritic atrophy may involve alterations in EAA transporter function, and decreased EAA transporter function may also contribute to chronic HPA axis activation. Understanding the molecular mechanisms of HPA axis activation will likely advance the development of therapeutic interventions for conditions in which GC levels are chronically elevated.  相似文献   

18.
19.
LRRK2 and SNCA, the gene for α-synuclein, are the two of the most important genetic factors of Parkinson's disease (PD). A-synuclein is aggregated and accumulated in neurons and glia in PD and considered the pathogenic culprit of the disease. A-synuclein aggregates spread from a few discrete regions of the brain to larger areas as the disease progresses through cell-to-cell propagation mechanism. LRRK2 is involved in the regulation of vesicle trafficking, in particular in the endolysosomal and autophagic pathways. Studies also suggest that LRRK2 might regulate the pathogenic actions of α-synuclein. However, the relationship between these two proteins in the pathogenesis of PD remains elusive. Here, we review the current literature on the pathophysiological function of LRRK2 with an emphasis on its role in the endolysosomal and autophagic pathways. We also propose a potential mechanism by which LRRK2 is involved in the regulation of aggregation and the propagation of α-synuclein.  相似文献   

20.
《Cytokine》2015,73(2):121-129
Although estrogen reduces inflammatory-mediated pain responses, the mechanisms behind its effects are unclear. This study investigated if estrogen modulates inflammatory signaling by reducing baseline or inflammation-induced cytokine levels in the injury-site, serum, dorsal root ganglia (DRG) and/or spinal cord. We further tested whether estrogen effects on cytokine levels are in part mediated through hypothalamic–pituitary–adrenal (HPA) axis activation. Lumbar DRG, spinal cord, serum, and hind paw tissue were analyzed for cytokine levels in 17β-estradiol-(20%) or vehicle-(100% cholesterol) treated female rats following ovariectomy/sham adrenalectomy (OVX), adrenalectomy/sham ovariectomy (ADX) or ADX + OVX operation at baseline and post formalin injection. Formalin significantly increased pro-inflammatory interleukin (IL)-6 levels in the paw, as well as pro- and anti-inflammatory cytokine levels in the DRG, spinal cord and serum in comparison to naïve conditions. Estrogen replacement significantly increased anti-inflammatory IL-10 levels in the DRG. Centrally, estradiol significantly decreased pro-inflammatory tumor necrosis factor (TNF)-α and IL-1β levels, as well as IL-10 levels, in the spinal cord in comparison to cholesterol treatment. At both sites, most estradiol modulatory effects occurred irrespective of pain or surgical condition. Estradiol alone had no influence on cytokine release in the paw or serum, indicating that estrogen effects were site-specific. Although cytokine levels were altered between surgical conditions at baseline and following formalin administration, ADX operation did not significantly reverse estradiol’s modulation of cytokine levels. These results suggest that estrogen directly regulates cytokines independent of HPA axis activity in vivo, in part by reducing cytokine levels in the spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号