首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maple syrup urine disease (MSUD) is a metabolic disease caused by a deficiency in the branched-chain α-keto acid dehydrogenase complex, leading to the accumulation of branched-chain keto acids and their corresponding branched-chain amino acids (BCAA) in patients. Treatment involves protein-restricted diet and the supplementation with a specific formula containing essential amino acids (except BCAA) and micronutrients, in order to avoid the appearance of neurological symptoms. Although the accumulation of toxic metabolites is associated to appearance of symptoms, the mechanisms underlying the brain damage in MSUD remain unclear, and new evidence has emerged indicating that oxidative stress contributes to this damage. In this context, this review addresses some of the recent findings obtained from cells lines, animal studies, and from patients indicating that oxidative stress is an important determinant of the pathophysiology of MSUD. Recent works have shown that the metabolites accumulated in the disease induce morphological alterations in C6 glioma cells through nitrogen reactive species generation. In addition, several works demonstrated that the levels of important antioxidants decrease in animal models and also in MSUD patients (what have been attributed to protein-restricted diets). Also, markers of lipid, protein, and DNA oxidative damage have been reported in MSUD, probably secondary to the high production of free radicals. Considering these findings, it is well-established that oxidative stress contributes to brain damage in MSUD, and this review offers new perspectives for the prevention of the neurological damage in MSUD, which may include the use of appropriate antioxidants as a novel adjuvant therapy for patients.  相似文献   

2.
Maple syrup urine disease (MSUD) is an inherited metabolic disorder biochemically characterized by the accumulation of branched-chain amino acids (BCAAs) and their branched-chain keto acids (BCKAs) in blood and other tissues. Neurological dysfunction is usually present in the affected patients, but the mechanisms of brain damage in this disease are not fully understood. Considering that brain energy metabolism seems to be altered in MSUD, the main objective of this study was to investigate the in vitro effect of BCAAs and BCKAs on creatine kinase activity, a key enzyme of energy homeostasis, in brain cortex of young rats. BCAAs, but not their BCKAs, significantly inhibited creatine kinase activity at concentrations similar to those found in the plasma of MSUD patients (0.5–5 mM). Considering the crucial role creatine kinase plays in energy homeostasis in brain, if this effect also occurs in the brain of MSUD patients, it is possible that inhibition of this enzyme activity may contribute to the brain damage found in this disease.  相似文献   

3.
Maple syrup urine disease (MSUD) is a metabolic disorder caused by the deficiency of the activity of the mitochondrial enzyme complex branched-chain l-2-keto acid dehydrogenase. The metabolic block results in tissue and body fluid accumulation of the branched-chain amino acids leucine (Leu), isoleucine and valine, as well as of their respective α-keto acids. Neurological sequelae are usually present in MSUD, but the pathophysiologic mechanisms of neurotoxicity are still poorly known. It was previously demonstrated that Leu elicits oxidative stress in rat brain. In the present study we investigated the possible mechanisms involved in Leu-induced oxidative damage. We observed a significant attenuation of Leu-elicited increase of thiobarbituric acid-reactive substances (TBA-RS) measurement when cortical homogenates were incubated in the presence of the free radical scavengers ascorbic acid plus trolox, dithiothreitol, glutathione, and superoxide dismutase, suggesting a probable involvement of superoxide and hydroxyl radicals in this effect. In contrast, the use of Nω-nitro-l-arginine methyl ester or catalase (CAT) did not affect TBA-RS values. We also demonstrated an inhibitory effect of Leu on the activities of the antioxidant enzymes CAT and gluthathione peroxidase, as well as a significant reduction in the membrane-protein thiol content from mitochondrial enriched preparations. Furthermore, dichlorofluorescein levels were increased although not significantly by Leu. Taken together, our present data indicate that an unbalance between free radical formation and inhibition of critical enzyme activities may explain the mechanisms involved in the Leu-induced oxidative damage.  相似文献   

4.
Maple syrup urine disease (MSUD) is a metabolic disorder caused by the deficiency of the activity of the mitochondrial enzyme complex branched-chain L-2-keto acid dehydrogenase. The metabolic block results in tissue and body fluid accumulation of the branched-chain amino acids leucine (Leu), isoleucine and valine, as well as of their respective alpha-keto acids. Neurological sequelae are usually present in MSUD, but the pathophysiologic mechanisms of neurotoxicity are still poorly known. It was previously demonstrated that Leu elicits oxidative stress in rat brain. In the present study we investigated the possible mechanisms involved in Leu-induced oxidative damage. We observed a significant attenuation of Leu-elicited increase of thiobarbituric acid-reactive substances (TBA-RS) measurement when cortical homogenates were incubated in the presence of the free radical scavengers ascorbic acid plus trolox, dithiothreitol, glutathione, and superoxide dismutase, suggesting a probable involvement of superoxide and hydroxyl radicals in this effect. In contrast, the use of Nomega-nitro-L-arginine methyl ester or catalase (CAT) did not affect TBA-RS values. We also demonstrated an inhibitory effect of Leu on the activities of the antioxidant enzymes CAT and gluthathione peroxidase, as well as a significant reduction in the membrane-protein thiol content from mitochondrial enriched preparations. Furthermore, dichlorofluorescein levels were increased although not significantly by Leu. Taken together, our present data indicate that an unbalance between free radical formation and inhibition of critical enzyme activities may explain the mechanisms involved in the Leu-induced oxidative damage.  相似文献   

5.
Maple syrup urine disease (MSUD) is a neurometabolic disorder caused by deficiency of the activity of the mitochondrial enzyme complex branched-chain α-keto acid dehydrogenase leading to accumulation of the branched-chain amino acids (BCAA) and their corresponding branched-chain α-keto acids. In this study, we examined the effects of acute and chronic administration of BCAA on protein levels and mRNA expression of nerve growth factor (NGF) considering that patients with MSUD present neurological dysfunction and cognitive impairment. Considering previous observations, it is suggested that oxidative stress may be involved in the pathophysiology of the neurological dysfunction of MSUD. We also investigated the influence of antioxidant treatment (N-acetylcysteine and deferoxamine) in order to verify the influence of oxidative stress in the modulation of NGF levels. Our results demonstrated decreased protein levels of NGF in the hippocampus after acute and chronic administration of BCAA. In addition, we showed a significant decrease in the expression of ngf in the hippocampus only following acute administration in 10-day-old rats. Interestingly, antioxidant treatment was able to prevent the decrease in NGF levels by increasing ngf expression. In conclusion, the results suggest that BCAA is involved in the regulation of NGF in the developing rat. Thus, it is possible that alteration of neurotrophin levels during brain maturation could be of pivotal importance in the impairment of cognition provoked by BCAA. Moreover, the decrease in NGF levels was prevented by antioxidant treatment, reinforcing that the hypothesis of oxidative stress can be an important pathophysiological mechanism underlying the brain damage observed in MSUD.  相似文献   

6.
Abstract: Because it is well known that excess branched-chain amino acids (BCAAs) have a profound influence on neurological function, studies were conducted to determine the impact of BCAAs on neuronal and astrocytic metabolism and on trafficking between neurons and astrocytes. The first step in the metabolism of BCAAs is transamination with α-ketoglutarate to form the branched-chain α-keto acids (BCKAs). The brain is unique in that it expresses two separate branched-chain aminotransferase (BCAT) isoenzymes. One is the common peripheral form [mitochondrial (BCATm)], and the other [cytosolic (BCATc)] is unique to cerebral tissue, placenta, and ovaries. Therefore, attempts were made to define the isoenzymes' spatial distribution and whether they might play separate metabolic roles. Studies were conducted on primary rat brain cell cultures enriched in either astroglia or neurons. The data show that over time BCATm becomes the predominant isoenzyme in astrocyte cultures and that BCATc is prominent in early neuronal cultures. The data also show that gabapentin, a structural analogue of leucine with anticonvulsant properties, is a competitive inhibitor of BCATc but that it does not inhibit BCATm. Metabolic studies indicated that BCAAs promote the efflux of glutamine from astrocytes and that gabapentin can replace leucine as an exchange substrate. Studying astrocyte-enriched cultures in the presence of [U-14C]glutamate we found that BCKAs, but not BCAAs, stimulate glutamate transamination to α-ketoglutarate and thus irreversible decarboxylation of glutamate to pyruvate and lactate, thereby promoting glutamate oxidative breakdown. Oxidation of glutamate appeared to be largely dependent on the presence of an α-keto acid acceptor for transamination in astrocyte cultures and independent of astrocytic glutamate dehydrogenase activity. The data are discussed in terms of a putative BCAA/BCKA shuttle, where BCATs and BCAAs provide the amino group for glutamate synthesis from α-ketoglutarate via BCATm in astrocytes and thereby promote glutamine transfer to neurons, whereas BCATc reaminates the amino acids in neurons for another cycle.  相似文献   

7.
Wang YP  Qi ML  Li TT  Zhao YJ 《Gene》2012,498(1):112-115
Maple syrup urine disease (MSUD) is an autosomal recessive metabolic disorder that is caused by mutations in the subunits of the branched-chain α-ketoacid dehydrogenase (BCKD) complex. BCKD is a mitochondrial complex encoded by four nuclear genes (BCKDHA, BCKDHB, DBT, and DLD) and is involved in the metabolism of branched-chain amino acids (BCAAs). In this study, we investigated the DNA sequences of BCKDHA, BCKDHB and DBT genes for mutations in a Chinese newborn with the classic form of MSUD and predicted the associated conformational changes using molecular modeling. We identified two previously unreported mutations in the BCKDHB gene, R170H (c.509G>A) in exon 5 and Q346R (c.1037 A>G) in exon 9. In silico analysis of the two novel missense mutations revealed that the mutation R170H-β alters the spatial orientation with both Y195-β' and S206-α, which results in unstable β-β' assembly and an unstable K(+) ion binding loop of the α subunit, respectively; The Q346R mutation is predicted to disrupt the spatial conformation between Q346-β and I357-β', which reduces the affinity of the β-β' subunits. These results indicate that R170-β and Q346-β are crucial for the activity of the E1 component. These two novel mutations, R170H and Q346R result in the patient's clinical manifestation of the classic form of MSUD.  相似文献   

8.
Branched-chain α-ketoacid dehydrogenase (BCKDH) catalyzes the critical step in the branched-chain amino acid (BCAA) catabolic pathway and has been the focus of extensive studies. Mutations in the complex disrupt many fundamental metabolic pathways and cause multiple human diseases including maple syrup urine disease (MSUD), autism, and other related neurological disorders. BCKDH may also be required for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs) from BCAAs. The pathology of MSUD has been attributed mainly to BCAA accumulation, but the role of mmBCFA has not been evaluated. Here we show that disrupting BCKDH in Caenorhabditis elegans causes mmBCFA deficiency, in addition to BCAA accumulation. Worms with deficiency in BCKDH function manifest larval arrest and embryonic lethal phenotypes, and mmBCFA supplementation suppressed both without correcting BCAA levels. The majority of developmental defects caused by BCKDH deficiency may thus be attributed to lacking mmBCFAs in worms. Tissue-specific analysis shows that restoration of BCKDH function in multiple tissues can rescue the defects, but is especially effective in neurons. Taken together, we conclude that mmBCFA deficiency is largely responsible for the developmental defects in the worm and conceivably might also be a critical contributor to the pathology of human MSUD.  相似文献   

9.
Branched-chain amino acids (BCAAs) catabolism follows sequential reactions and their metabolites intersect with other metabolic pathways. The initial enzymes in BCAA metabolism, the mitochondrial branched-chain aminotransferase (BCATm), which deaminates the BCAAs to branched-chain α-keto acids (BCKAs); and the branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC), which oxidatively decarboxylates the BCKAs, are organized in a supramolecular complex termed metabolon. Glutamate dehydrogenase (GDH1) is found in the metabolon in rat tissues. Bovine GDH1 binds to the pyridoxamine 5′-phosphate (PMP)-form of human BCATm (PMP-BCATm) but not to pyridoxal 5′-phosphate (PLP)-BCATm in vitro. This protein interaction facilitates reamination of the α-ketoglutarate (αKG) product of the GDH1 oxidative deamination reaction. Human GDH1 appears to act like bovine GDH1 but human GDH2 does not show the same enhancement of BCKDC enzyme activities. Another metabolic enzyme is also found in the metabolon is pyruvate carboxylase (PC). Kinetic results suggest that PC binds to the E1 decarboxylase of BCKDC but does not effect BCAA catabolism. The protein interaction of BCATm and GDH1 promotes regeneration of PLP-BCATm which then binds to BCKDC resulting in channeling of the BCKA products from BCATm first half reaction to E1 and promoting BCAA oxidation and net nitrogen transfer from BCAAs. The cycling of nitrogen through glutamate via the actions of BCATm and GDH1 releases free ammonia. Formation of ammonia may be important for astrocyte glutamine synthesis in the central nervous system. In peripheral tissue association of BCATm and GDH1 would promote BCAA oxidation at physiologically relevant BCAA concentrations.  相似文献   

10.
Maple syrup urine disease (MSUD) is an inherited neurometabolic disorder biochemically characterized by the accumulation of the branched-chain alpha-keto acids (BCKA) alpha-ketoisocaproic (KIC), alpha-keto-beta-methylvaleric (KMV) and alpha-ketoisovaleric (KIV) and their respective branched-chain alpha-amino acids in body fluids and tissues. Affected MSUD patients have predominantly neurological features, including cerebral edema and atrophy whose pathophysiology is not well established. In the present study we investigated the effects of KIC, KMV and KIV on cell morphology, cytoskeleton reorganization, actin immunocontent and on various parameters of oxidative stress, namely total antioxidant reactivity (TAR), glutathione (GSH) and nitric oxide concentrations, and on the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) in C6 glioma cells. We initially observed that C6 cultivated cells exposed for 3 h to the BCKA (1 and 10 mM) changed their usual rounded morphology to a fusiform or process-bearing cell appearance, while 24 h exposure to these organic acids elicited massive cell death. Rhodamine-labelled phalloidin analysis revealed that these organic acids induced reorganization of the actin cytoskeleton with no modifications on total actin content. It was also observed that 3h cell exposure to low doses of all BCKA (1 mM) resulted in a marked reduction of the non-enzymatic antioxidant defenses, as determined by TAR and GSH measurements. In addition, KIC provoked a reduced activity of SOD and GPx, whereas KMV caused a diminution of SOD activity. In contrast, CAT activity was not modified by the metabolites. Furthermore, nitric oxide production was significantly increased by all BCKA. Finally, we observed that the morphological features caused by BCKA on C6 cells were prevented by the use of the antioxidants GSH (1.0 mM), alpha-tocopherol (trolox; 10 microM) and Nomega-nitro-L-arginine methyl ester (L-NAME; 500 microM). These results strongly indicate that oxidative stress might be involved in the cell morphological alterations and death, as well as in the cytoskeletal reorganization elicited by the BCKA. It is presumed that these findings are possibly implicated in the neuropathological features observed in patients affected by MSUD.  相似文献   

11.
Summary Although the cause of amyotrophic lateral sclerosis (ALS) remains unknown, biological findings suggest that the excitatory amino acid glutamate contributes to the pathogenesis of ALS. In previous studies of ALS, the therapeutic effect of the branched-chain amino acids (BCAAs) leucine, valine and isoleucine has been evaluated. The present study aimed at investigating the acute effect of BCAAs on plasma glutamate levels in ALS patients. Following two oral doses of BCAAs, significantly increased plasma levels were seen for valine (500%), isoleucine (1,377%) and leucine (927%), however the plasma level of glutamate was not affected. The plasma level of several other amino acids (tryptophan, tyrosine, phenylalanine and methionine) were found decreased after oral BCAAs, which may indicate a diminution in the rate of degradation of muscle protein and/or an increase in tissue disposal of amino acids.  相似文献   

12.
Maple syrup urine disease (MSUD) is an autosomal recessive disorder caused by defects in the mitochondrial multienzyme complex branched-chain alpha-keto acid dehydrogenase (BCKD; EC 1.2.4.4), responsible for the oxidative decarboxylation of the branched-chain ketoacids (BCKA) derived from the branched-chain amino acids (BCAA) leucine, valine, and isoleucine. Deficiency of the enzyme results in increased concentrations of the BCAA and BCKA in body cells and fluids. The treatment of the disease is aimed at keeping the concentration of BCAA below the toxic concentrations, primarily by dietary restriction of BCAA intake. The objective of this study was to determine the total BCAA requirements of patients with classical MSUD caused by marked deficiency of BCKD by use of the indicator amino acid oxidation (IAAO) technique. Five MSUD patients from the MSUD clinic of The Hospital for Sick Children participated in the study. Each was randomly assigned to different intakes of BCAA mixture (0, 20, 30, 50, 60, 70, 90, 110, and 130 mg.kg(-1).day(-1)), in which the relative proportion of BCAA was the same as that in egg protein. Total BCAA requirement was determined by measuring the oxidation of l-[1-(13)C]phenylalanine to (13)CO(2). The mean total BCAA requirement was estimated using a two-phase linear regression crossover analysis, which showed that the mean total BCAA requirement was 45 mg.kg(-1).day(-1), with the safe level of intake (upper 95% confidence interval) at 62 mg.kg(-1).day(-1). This is the first time BCAA requirements in patients with MSUD have been determined directly.  相似文献   

13.
Abstract: The metabolism of branched-chain amino acids (BCAAs) was studied in cortical synaptosomes. With [15N]leucine (1 mM) as precursor, the cumulative appearance of 15N in [15N]glutamate and [15N]aspartate was 0.2 nmol/min/mg of protein without supplemental α-ketoglutarate and 0.3 nmol/min/mg of protein in the presence of α-ketoglutarate (0.5 mM). The BCAA aminotransferase reaction also proceeded in the “reverse” direction [α-ketoisocaproate (KIC) + glutamate → leucine + α-ketoglutarate]. This was documented by incubating synaptosomes with [15N]glutamate and measuring the formation of [15N]leucine. Without KIC in the medium, the rate of [15N]leucine production was 0.13 nmol/min/mg of protein. In the presence of 25 µM KIC the rate was 0.79 nmol/min/mg of protein and even greater (1.0 nmol/min/mg of protein) in the presence of 500 µM KIC. The reamination of KIC was two- to threefold faster with [2-15N]glutamine as precursor compared with [15N]glutamate. The ketoacid of valine, α-ketoisovalerate (KIV), was reaminated to [15N]valine at a rate comparable to that observed with respect to KIC. The BCAA transaminase mediated not only the bidirectional transfer of amino groups between leucine or valine and glutamate, but also the direct transfer of nitrogen between leucine and valine. This was ascertained in studies in which the incubation medium was supplemented with either [15N]leucine and KIV or [15N]valine and KIC (amino acids at 1 mM and ketoacids at 25 or 500 µM). The rate was faster in the direction of leucine formation at both the lower (6.1-fold) and higher (1.7-fold) KIC concentration. It is suggested that in synaptosomes the BCAA transaminase (a) functions predominantly in the direction of leucine formation and (b) maintains a constant ratio of BCAAs and ketoacids to one other.  相似文献   

14.
Accumulation of the branched-chain alpha-keto acids (BCKA), alpha-ketoisocaproic acid (KIC), alpha-keto-beta-methylvaleric acid (KMV), and alpha-ketoisovaleric acid (KIV) and their respective branched-chain alpha-amino acids (BCAA) in tissues and biological fluids is the biochemical hallmark of patients affected by the neurometabolic disorder known as maple syrup urine disease (MSUD). Considering that brain energy metabolism is possibly altered in MSUD, the objective of this study was to determine creatine kinase (CK) activity, a key enzyme of energy homeostasis, in C6 glioma cells exposed to BCKA. The cells were incubated with 1, 5, or 10 mM BCKA for 3 h and the CK activity measured afterwards. The results indicated that the BCKA significantly inhibited CK activity at all tested concentrations. Furthermore, the inhibition caused by the BCKA on CK activity was totally prevented by preincubation with the energetic substrate creatine and by coincubation with the N-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, indicating that deficit of energy and nitric oxide (NO) are involved in these effects. In contrast, other antioxidants such as glutathione (GSH) and trolox (soluble Vitamin E) were not able to prevent CK inhibition. In addition, we observed that the C6 cells changed their usual rounded morphology when exposed for 3 h to 10 mM BCKA and that creatine and L-NAME prevented these morphological alterations. Considering the importance of CK for brain metabolism homeostasis, it is conceivable that inhibition of this enzyme by increased levels of BCKA may contribute to the neurodegeneration of MSUD patients.  相似文献   

15.
The branched-chain amino acids (BCAAs) are essential amino acids and therefore must be continuously available for protein synthesis. However, BCAAs are toxic at high concentrations as evidenced by maple syrup urine disease (MSUD), which explains why animals have such an efficient oxidative mechanism for their disposal. Nevertheless, it is clear that leucine is special among the BCAAs. Leucine promotes global protein synthesis by signaling an increase in translation, promotes insulin release, and inhibits autophagic protein degradation. However, leucine's effects are self-limiting because leucine promotes its own disposal by an oxidative pathway, thereby terminating its positive effects on body protein accretion. A strong case can therefore be made that the proper leucine concentration in the various compartments of the body is critically important for maintaining body protein levels beyond simply the need of this essential amino acid for protein synthesis. The goal of the work of this laboratory is to establish the importance of regulation of the branched chain alpha-ketoacid dehydrogenase complex (BCKDC) to growth and maintenance of body protein. We hypothesize that proper regulation of the activity state of BCKDC by way of its kinase (BDK) and its phosphatase (BDP) is critically important for body growth, tissue repair, and maintenance of body protein. We believe that growth and protection of body protein during illness and stress will be improved by therapeutic control of BCKDC activity. We also believe that it is possible that the negative effects of some drugs (PPAR alpha ligands) and dietary supplements (medium chain fatty acids) on growth and body protein maintenance can be countered by therapeutic control of BCDKC activity.  相似文献   

16.
A high-performance ligand-exchange chromatography with ultraviolet detection method for confirmation diagnosis of maple syrup urine disease (MSUD) was developed that relies on the determination of branched-chain amino acids (BCAAs) and Phe levels in blood. The dynamic ranges for the BCAAs and Phe were 50-1000 μM (r(2)=0.9982-0.9996) and 74-873 μM (r(2)=0.9992) from a dried blood spot, and the BCAA detection limits (S/N=3) were 0.43-1.91 μM. The mean recoveries of BCAA for intra- and inter-day assays were 92.1-103.0%. The ranges of alloisoleucine (Allo-Ile)/Phe ratio were ND-0.04 and 1.5-2.4 for PKU and MSUD patient samples, respectively. The lowest ratio (1.5) of the MSUD samples was 37.5 times higher than the highest ratio (0.04) of the PKU samples. Therefore, the Allo-Ile/Phe ratio was very useful biomarker for confirmation diagnosis of MSUD.  相似文献   

17.
Generation of Ketone Bodies from Leucine by Cultured Astroglial Cells   总被引:5,自引:2,他引:3  
Abstract: To elucidate the significance of branched-chain amino acids (BCAAs) for brain energy metabolism, the capacity to use BCAAs for oxidative metabolism was investigated in astroglia-rich primary cultures derived from newborn rat brain. The cells selectively removed BCAAs from the culture medium, the disappearance following first-order kinetics. The BCAAs disappeared rapidly in spite of the presence of sufficient glucose as substrate for the generation of energy. Taking into consideration that the ketogenic amino acid leucine could be degraded only to acetyl-CoA and acetoacetate, and with the knowledge that astroglial cells have the capacity to secrete ketone bodies, this amino acid was chosen for further metabolic studies. After incubation of the cells with leucine, acetoacetate, d -β-hydroxybutyrate, and α-ketoisocaproate were found to have accumulated in the culture medium. Identification of the radioactive metabolites generated from [4,5-3H]leucine established that the source of the substances released was indeed leucine. These results indicate that, at least in culture, astroglial cells degrade leucine via the known metabolite α-ketoisocaproate, to acetoacetate, which can be further reduced to d -β-hydroxybutyrate. It is hypothesized that upon release from brain astrocytes, the ketone bodies could serve as fuel molecules for neighboring cells such as neurons and oligodendrocytes. In view of these and other results, astrocytes may be considered the brain's fuel processing plants.  相似文献   

18.
Maple syrup urine disease (MSUD) is a rare disorder of branched-chain amino acids (BCAA) metabolism caused by the defective function of branched-chain α-ketoacid dehydrogenase complex (BCKD). The disease causal mutations can occur either in BCKDHA, BCKDHB or DBT genes encoding respectively the E1α, E1β and E2 subunits of the complex. In this study we report the molecular characterization of 3 Tunisian patients with the classic form of MSUD. Two novel putative mutations have been identified: the alteration c.716A>G (p.Glu239Gly) in BCKDHB and a small deletion (c.1333_1336delAATG; p.Asn445X) detected in DBT gene.  相似文献   

19.
Addition of NADH to crude but not to pure branched-chain α-keto acid decarboxylase decreased the CO2 production from α-keto-β-methylvalerate (KMV) suggesting the presence of an NADH dependent inhibitor in the crude enzyme from Bacillus subtilis. This NADH-dependent decarboxylase inhibitor was purified to homogeneity by a fast protein liquid chromatography system.

The purified inhibitor was identical with leucine dehydrogenase as to N-terminal amino acid squence (35 residues) and molecular weight, and catalyzed the oxidative deamination of three branched chain amino acids (BCAAs), valine, leucine, and isoleucine. The decarboxylase inhibitor was therefore identified as leucine dehydrogenase. A decreased substrate availability caused by leucine dehydrogenase thus reasonably accounted for the NADH dependent inhibition of the decarboxylation. In turn, the observation that leucine dehydrogenase competes with the decarboxylase for branched-chain α-keto acid (BCKA) suggested an involvement of this enzyme in the branched chain fatty acid (BCFA) biosynthesis. This view was supported by the observation that addition of NAD to crude fatty acid synthetase increased the incorporation of isoleucine into BCFAs. Pyridoxal-5′-phosphate and α-ketoglutarate, cofactors for BCAA transaminase, modulated BCFA biosynthesis from isoleucine in vitro, suggesting also the involvement of transaminase reaction in BCFA biosynthesis.  相似文献   

20.
Acetate and butanoate inhibited and hexanoate and octanoate increased the 14CO2 production from 0.1 mM [1-14C]-labelled 2-oxoisocaproate (KIC) and 2-oxoisovalerate (KIV) in rat hemidiaphragms. Octanoate increased KIC and KIV oxidation in rat soleus muscle, too, inhibited it in human skeletal muscle and had a divergent effect in rat and human heart slices. In rat hemidiaphragms octanoate primarily affected the process of oxidative decarboxylation. No effect was found on transamination rates of branched-chain amino acids and on the CO2 production beyond alpha-decarboxylation. The reverse transamination of branched-chain 2-oxo acids and their incorporation into protein decreased in the presence of octanoate. Octanoate had no effect on KIC and KIV oxidation at higher 2-oxo acid concentrations and in hemidiaphragms from 3-day-starved rats. The observed interactions are discussed and related to regulatory mechanisms, which are known to affect the branched-chain 2-oxo acid dehydrogenase complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号