首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The dramatic transformation from a larva to an adult must be accompanied by a coordinated activity of genes and hormones that enable an orchestrated transformation from larval to pupal/adult tissues. The maintenance of larval appendages and their subsequent transformation to appendages in holometabolous insects remains elusive at the developmental genetic level. Here the role of a key appendage patterning gene Distal-less (Dll) was examined in mid- to late-larval stages of the flour beetle, Tribolium castaneum. During late larval development, Dll was expressed in appendages in a similar manner as previously reported for the tobacco hornworm, Manduca sexta. Removal of this late Dll expression resulted in disruption of adult appendage patterning. Intriguingly, earlier removal resulted in dramatic loss of structural integrity and identity of larval appendages. A large amount of variability in appendage morphology was observed following Dll dsRNA injection, unlike larvae injected with dachshund dsRNA. These Dll dsRNA-injected larvae underwent numerous supernumerary molts, which could be terminated with injection of either JH methyltransferase or Methoprene-tolerant dsRNA. Apparently, the partial dedifferentiation of the appendages in these larvae acts to maintain high JH and, hence, prevents metamorphosis.  相似文献   

2.
3.
To understand the low toxicity of Cry toxins in planthoppers, proteolytic activation of Cry1Ab in Nilaparvata lugens was studied. The proteolytic processing of Cry1Ab protoxin by N. lugens midgut proteases was similar to that by trypsin activated Cry1Ab. The Cry1Ab processed with N. lugens midgut proteases was highly insecticidal against Plutella xylostella. However, Cry1Ab activated either by trypsin or the gut proteases of the brown planthopper showed low toxicity in N. lugens. Binding analysis showed that activated Cry1Ab bound to brush border membrane vesicles (BBMV) from N. lugens at a significantly lower level than to BBMV from P. xylostella.  相似文献   

4.
The expression of the Hox gene Distal-less (Dll) directs the development of appendages in a wide variety of animals. In Drosophila, its expression is subjected to a complex developmental control. In the present work we have studied a 17 kb genomic region in the Dll locus which lies downstream of the coding sequence and found control elements of primary functional importance for the expression of Dll in the leg and in other tissues. Of particular interest is a control element, which we have called LP, which drives expression of Dll in the leg primordium from early embryonic development, and whose deletion causes severe truncation and malformation of the adult leg. This is the first Dll enhancer for which, in addition to the ability to drive expression of a reporter, a role can be demonstrated in the expression of the endogenous Dll gene and in the development of the leg. In addition, our results suggest that some enhancers, contrary to the widely accepted notion, may require a specific 5′ or 3′ position with respect to the transcribed region.  相似文献   

5.
In insects, forewings and hindwings usually have different shapes, sizes, and color patterns. A variety of RNAi experiments across insect species have shown that the hox gene Ultrabithorax (Ubx) is necessary to promote hindwing identity. However, it remains unclear whether Ubx is sufficient to confer hindwing fate to forewings across insects. Here, we address this question by over-expressing Ubx in the butterfly Bicyclus anynana using a heat-shock promoter. Ubx whole-body over-expression during embryonic and larvae development led to body plan changes in larvae but to mere quantitative changes to adult morphology, respectively. Embryonic heat-shocks led to fused segments, loss of thoracic and abdominal limbs, and transformation of head limbs to larger appendages. Larval heat-shocks led to reduced eyespot size in the expected homeotic direction, but neither additional eyespots nor wing shape changes were observed in forewings as expected of a homeotic transformation. Interestingly, Ubx was found to be expressed in a novel, non-characteristic domain – in the hindwing eyespot centers. Furthermore, ectopic expression of Ubx on the pupal wing activated the eyespot-associated genes spalt and Distal-less, known to be directly repressed by Ubx in the fly?s haltere and leg primordia, respectively, and led to the differentiation of black wing scales. These results suggest that Ubx has been co-opted into a novel eyespot gene regulatory network, and that it is capable of activating black pigmentation in butterflies.  相似文献   

6.
The origin of new morphological structures requires the establishment of new genetic regulatory circuits to control their development, from initial specification to terminal differentiation. The upstream regulatory genes are usually the first to be identified, while the mechanisms that translate novel regulatory information into phenotypic diversity often remain obscure. In particular, elaborate sex-specific structures that have evolved in many animal lineages are inevitably controlled by sex-determining genes, but the genetic basis of sexually dimorphic cell differentiation is rarely understood. In this report, we examine the role of dachshund (dac), a gene with a deeply conserved function in sensory organ and appendage development, in the sex comb, a recently evolved male-specific structure found in some Drosophila species. We show that dac acts during metamorphosis to restrict sex comb development to the appropriate leg region. Localized repression of dac by the sex determination pathway is necessary for male-specific morphogenesis of sex comb bristles. This pupal function of dac is separate from its earlier role in leg patterning, and Dac at this stage is not dependent on the pupal expression of Distalless (Dll), the main regulator of dac during the larval period. Dll acts in the epithelial cells surrounding the sex comb during pupal development to promote sex comb rotation, a complex cellular process driven by coordinated cell rearrangement. Our results show that genes with well-conserved developmental functions can be re-used at later stages in development to regulate more recently evolved traits. This mode of gene co-option may be an important driver of evolutionary innovations.  相似文献   

7.
8.
RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests.  相似文献   

9.
10.
The development of the Drosophila leg is a good model to study processes of pattern formation, cell death and segmentation. Such processes require the coordinate activity of different genes and signaling pathways that progressively subdivide the leg territory into smaller domains. One of the main pathways needed for leg development is the Notch pathway, required for determining the proximo-distal axis of the leg and for the formation of the joints that separate different leg segments. The mechanisms required to coordinate such events are largely unknown. We describe here that the zinc finger homeodomain-2 (zfh-2) gene is highly expressed in cells that will form the leg joints and needed to establish a correct size and pattern in the distal leg. There is an early requirement of zfh-2 to establish the correct proximo-distal axis, but zfh-2 is also needed at late third instar to form the joint between the fourth and fifth tarsal segments. The expression of zfh-2 requires Notch activity but zfh-2 is necessary, in turn, to activate Notch targets such as Enhancer of split and big brain. zfh-2 is controlled by the Drosophila activator protein 2 gene and regulates the late expression of tarsal-less. In the absence of zfh-2 many cells ectopically express the pro-apoptotic gene head involution defective, activate caspase-3 and are positive for acridine orange, indicating they undergo apoptosis. Our results demonstrate the key role of zfh-2 in the control of cell death and Notch signaling during leg development.  相似文献   

11.
Trehalose is the main blood sugar of insects, and the enzyme trehalase is involved in energy metabolism and controlling trehalose levels in cells. Two forms (soluble and membrane-bound) of trehalase and the corresponding genes (NlTre-1 and NlTre-2) were identified from the brown planthopper, Nilaparvata lugens. Both NlTre-1 and NlTre-2 contain trehalase signature motifs, and NlTre-2 contains a putative transmembrane domain. Comparison of trehalase activity and gene mRNA level at different developmental stages, or following application of 20-hydroxyecdysone (20E), suggests that NlTre-1 and NlTre-2 encode a soluble trehalase and a membrane-bound trehalase respectively. Soluble trehalase activity accounted for the majority of total trehalase activity in N. lugens. Only soluble trehalase activity and NlTre-1 mRNA level could be induced by 20E. Additionally, only soluble trehalase activity was significantly higher in macropterous individuals than in brachypterous morphs. These results indicate that only soluble trehalase is differentially expressed between macropterous and brachypterous individuals and is more responsive to hormone stimulus.  相似文献   

12.
The white-backed planthopper (WBPH), Sogatella furcifera (Horváth), is one of the most destructive pests of rice crops in many Asian countries. Using long-PCR and shotgun library methods, we sequenced the entire mitochondrial genomes (mt-genomes) of two WBPH individuals. Total lengths of the mt-genome of the two WBPH individuals were 16,612 bp and 16,654 bp with an identical AT content of 76.19%. Among the 13 protein coding genes (PCGs), only nad5 used an atypical initiation codon GTG. Most of the tRNA genes had the typical cloverleaf secondary structure except that the dihydrouridine (DHU) arms in two trnS genes and the TΨC arm of trnG gene did not form a stable stem-loop structure. Similar to the brown planthopper (BPH), Nilaparvata lugens (Stål), and the small brown planthopper (SBPH), Laodelphax striatellus (Fallén), some extraordinary features were observed in the WBPH mt-genome. These include similar gene rearrangement pattern, unusually short length of the atp8 gene and variable numbers of tandem repeat (VNTR) structure in control region. Interestingly, the same tandem repeat unit with stable secondary structure appeared in two different planthoppers, WBPH and SBPH, which belong to two different genera of the Delphacidae. This peculiar feature provides a direct evidence for the close relationship between the two planthoppers and updates our understanding of the evolutionary characteristics of mitochondrial control region. Comparison with two other predominant rice planthoppers (BPH and SBPH) revealed that different PCGs of mitochondria exhibit different evolutionary patterns.  相似文献   

13.
14.
Polycomb group (PcG) proteins are negative regulators that maintain the expression of homeotic genes and affect cell proliferation. Pleiohomeotic (Pho) is a unique PcG member with a DNA-binding zinc finger motif and was proposed to recruit other PcG proteins to form a complex. The pho null mutants exhibited several mutant phenotypes such as the transformation of antennae to mesothoracic legs. We examined the effects of pho on the identification of ventral appendages and proximo-distal axis formation during postembryogenesis. In the antennal disc of the pho mutant, Antennapedia (Antp), which is a selector gene in determining leg identity, was ectopically expressed. The homothorax (hth), dachshund (dac) and Distal-less (Dll) genes involved in proximo-distal axis formation were also abnormally expressed in both the antennal and leg discs of the pho mutant. The engrailed (en) gene, which affects the formation of the anterior-posterior axis, was also misexpressed in the anterior compartment of antennal and leg discs. These mutant phenotypes were enhanced in the mutant background of Posterior sex combs (Psc) and pleiohomeotic-like (phol), which are another PcG genes. These results suggest that pho functions in maintaining expression of genes involved in the formation of ventral appendages and the proximo-distal axis.  相似文献   

15.
Crowding and changes in food availability are two critical environmental conditions that impact an animal''s trajectory toward either migration or reproduction. Many insects facing this challenge have evolved wing polyphenisms. When conditions favor reproduction, wing polyphenic species produce adults that either have no wings or short, non-functional wings. Facultative wing growth reflects a physiological and evolutionary trade-off between migration and reproduction, triggered by environmental conditions. How environmental cues are transduced to produce these alternative forms, and their associated ecological shift from migration to reproduction, remains an important unsolved problem in evolutionary ecology. The brown planthopper, a wing polymorphic insect exhibiting strong trade-offs in investment between migration and reproduction, is one of the most serious rice pests in Asia. In this study, we investigated the function of four genes in the insulin-signaling pathway known to couple nutrition with growth, PI3 Kinase (PI3K), PDK1, Akt (Protein Kinase B), and the forkhead gene FOXO. Using a combination of RNA interference and pharmacological inhibitor treatment, we show that all four genes contribute to tissue level regulation of wing polymorphic development in this insect. As predicted, silencing of the NlPI3K, NlAkt and NlPDK1 through dsRNA and with the pharmacological inhibitor Perifosine resulted in short-winged brown planthoppers, whereas knockdown of NlFOXO resulted in long-winged planthoppers. Morphometric analyses confirm that phenotypes from our manipulations mimic what would be found in nature, i.e., major parameters such as bristle number, wing area and body weight are not significantly different from non-experimental animals. Taken together, these data implicate the insulin-signaling pathway in the transduction of environmental factors into condition-dependent patterns of wing growth in insects.  相似文献   

16.
In this study, we developed the first genetic linkage map for the major rice insect pest, the brown planthopper (BPH, Nilaparvata lugens). The linkage map was constructed by integrating linkage data from two backcross populations derived from three inbred BPH strains. The consensus map consists of 474 simple sequence repeats, 43 single-nucleotide polymorphisms, and 1 sequence-tagged site, for a total of 518 markers at 472 unique positions in 17 linkage groups. The linkage groups cover 1093.9 cM, with an average distance of 2.3 cM between loci. The average number of marker loci per linkage group was 27.8. The sex-linkage group was identified by exploiting X-linked and Y-specific markers. Our linkage map and the newly developed markers used to create it constitute an essential resource and a useful framework for future genetic analyses in BPH.  相似文献   

17.
Infection of Galleria mellonella by feeding a mixture of Bacillus thuringiensis spores or vegetative bacteria in association with the toxin Cry1C results in high levels of larval mortality. Under these conditions the toxin or bacteria have minimal effects on the larva when inoculated separately. In order to evaluate whether G. mellonella can function as an oral infection model for human and entomo-bacterial pathogens, we tested strains of Bacillus cereus, Bacillus anthracis, Enterococcus faecalis, Listeria monocytogenes, Pseudomonas aeruginosa and a Drosophila targeting Pseudomonas entomophila strain. Six B. cereus strains (5 diarrheal, 1 environmental isolate) were first screened in 2nd instar G. mellonella larvae by free ingestion and four of them were analyzed by force-feeding 5th instar larvae. The virulence of these B. cereus strains did not differ from the B. thuringiensis virulent reference strain 407Cry with the exception of strain D19 (NVH391/98) that showed a lower virulence. Following force-feeding, 5th instar G. mellonella larvae survived infection with B. anthracis, L. monocytogenes, E. faecalis and P. aeruginosa strains in contrast to the P. entomophila strain which led to high mortality even without Cry1C toxin co-ingestion. Thus, specific virulence factors adapted to the insect intestine might exist in B. thuringiensis/B. cereus and P. entomophila. This suggests a co-evolution between host and pathogens and supports the close links between B. thuringiensis and B. cereus and more distant links to their relative B. anthracis.  相似文献   

18.
Antenna structure varies widely among insects, in contrast to the well-conserved structure of legs. The adult capitate antenna of the red flour beetle, Tribolium castaneum, is composed of eleven articles, organized into four distinct morphological regions (scape, pedicel, funicle and club). Here, we report the use of RNA interference to examine the functions of 21 genes during antenna metamorphosis in T. castaneum. Genes with conserved functions relative to the developmental model species Drosophila melanogaster include Distal-less and EGF signaling (antennal growth), spineless (determination of antennal identity) and the Notch signaling pathway (antennal growth, joint formation, and sensory bristle development). However, the functions of many genes differed from those predicted from the Drosophila model. In addition to a conserved gap phenotype, depletion of dachshund transformed funicle articles toward club-like identity. Depletion of Distal-less or homothorax did not cause antenna-to-leg transformation. Lim1 was required only for development of the scape-pedicle joint. Depletion of odd-skipped-related genes led to the loss of the entire funicle, while spalt, rotund, spineless, and dachshund affected smaller regions. Growth and joint formation were linked developmentally in the funicle, but not in the club. Joint formation within the club required bric-a-brac, aristaless, apterous, and pdm. Gene functions are discussed in terms of a model of antenna development in T. castaneum. This model provides a contrast to knowledge of antenna development in D. melanogaster, insight into the likely ancestral mode of antenna development, and a framework for considering diverse antenna morphologies.  相似文献   

19.
褐飞虱共生解脂假丝酵母抗吡虫啉菌株的驯化   总被引:3,自引:0,他引:3  
为进一步研究共生菌在褐飞虱对吡虫啉产生抗性中的生理生化机制,在稻田杀虫剂对褐飞虱共生解脂假丝酵母生长影响的基础上,选用不同吡虫啉浓度进行抗药性菌株的驯化。结果表明,褐飞虱共生解脂假丝酵母在不同吡虫啉浓度(2 000、1 000和500 mg/L)的固体培养基上继代培养,经过20代后2 000 mg/L培养基上的共生菌菌落数量,与未加吡虫啉的培养基上的菌落数量差异不明显,并且连续3代稳定后定为抗2 000 mg/L吡虫啉的共生菌菌株。在光镜下比较不同抗感吡虫啉菌株假菌丝的形态变化,发现抗吡虫啉菌株的假菌丝出现畸形,而且假丝变短,部分出现了膨大。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号