首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium avium ssp. paratuberculosis (MAP) causes a chronic, granulomatous inflammatory condition of the intestines in ruminants and wild-type species. It causes significant economic losses to the dairy and beef industries owing to reduced productivity, premature culling and mortality. Bovine peptidoglycan recognition protein 1 is an important pattern recognition molecule that is capable of directly killing microorganisms. The goal of this study was to identify single nucleotide polymorphisms (SNPs) in the gene encoding bovine peptidoglycan recognition protein 1 and to assess their association with susceptibility to MAP infection in dairy cattle. Blood and milk samples were collected from Holsteins in Southwestern and Eastern Ontario and tested for MAP infection using blood and milk ELISAs. A resource population consisting of 197 infected (S/P > 0.25) and 242 healthy (S/P < 0.10) cattle was constructed. Sequencing of pooled DNA was used to identify three SNPs (c.102G>C, c.480G>A and c.625C>A) that were genotyped in the resource population. Statistical analysis was performed using a logistic regression model fitting the additive and dominance effects of each SNP in the model. SNP c.480G>A (P = 0.054) was found to be associated with susceptibility to MAP infection. Cows with a copy of the major allele 'G' at this locus had an odds ratio of 1.51 (95% CI: 0.99-2.31) for being infected with MAP.  相似文献   

2.
Mycobacterium avium ssp. paratuberculosis (MAP) causes chronic enteritis in cattle that results in substantial financial losses to the cattle industry worldwide. Given that susceptibility to MAP infection is determined in part by genetics, marker‐assisted selection may help in the breeding of animals that are more resistant to MAP infection. The toll‐like receptor 4 gene (TLR4) was selected as a potential candidate gene because of its role in innate immunity and its involvement in MAP recognition and infection. The objective of this study, therefore, was to identify associations between TLR4 polymorphisms and susceptibility to MAP infection in Canadian Holstein cows. Two biologically relevant SNPs, including c.‐226G>C in the 5′‐untranslated region and the non‐synonymous SNP c.2021C>T in the potential TIR domain, were selected for an association analysis with MAP infection status in 409 Canadian Holsteins. The haplotype C‐T from these combined SNPs yielded significant association with susceptibility to MAP infection, supporting the involvement of TLR4 in susceptibility to MAP infection.  相似文献   

3.
Mycobacterium avium ssp. paratuberculosis (MAP) infection causes a chronic granulomatous inflammatory condition of the bovine gut that is characterized by diarrhea, progressive weight loss, and emaciation, and ultimately leads to loss in productivity and profitability of dairy operations. The host cytokine machinery is known to play an important role in protecting against MAP infection. Therefore, the goal of the present study was to assess whether polymorphisms in candidate genes encoding important cytokines and cytokine receptors are associated with MAP infection status of dairy cattle. MAP infection status was evaluated based on serum and milk enzyme-linked immunosorbent assays (ELISAs) for MAP-specific antibodies. Twenty previously reported polymorphisms in genes encoding bovine interferon gamma (IFNG), IFNGR1, IFNGR2, IL22, IL22RA1, IL12RB1, IL12RB2, and IL23R were genotyped in a resource population of 446 dairy Holsteins with known MAP infection status, and logistic regression was used to assess the statistical association with a binomial MAP infection status phenotype. Four SNPs in IFNGR2, IL12RB1, IL12RB2, and IL23R were found to be associated with the MAP infection status of the resource population. These results underscore the importance of cytokines and their receptors in conferring protection against MAP infection and warrant further functional characterization of these associations.  相似文献   

4.
5.

Objective

Toll-like receptor 4 (TLR4) is an important lipo-polysaccharide (LPS) receptor in gastric epithelial cell signaling transduction and plays critical roles in the development and progression of gastric cancer (GC). We investigated the effects of TLR4 gene polymorphisms and gene–environmental interactions on the risk of GC in Northeastern China.

Methods

We genotyped two single-nucleotide polymorphisms (SNPs) in TLR4 (rs10116253 and rs1927911) in 217 GC patients and 294 cancer-free controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Odds ratio (OR) and 95% confidence intervals (CIs) were estimated by unconditional logistic-regression models.

Results

Individuals carrying CC genotype of rs10116253 and TT genotype of rs1927911 had a significantly decreased risk of GC (adjusted OR = 0.33, 95% CI 0.18–0.60, P < 0.001 and adjusted OR = 0.37, 95% CI 0.21–0.67, P = 0.001 respectively), compared with TT genotype of rs10116253 and CC genotype of rs1927911. In addition, the SNP effects were additive to the effects of some known environmental factors without any interaction between them in the susceptibility to GC.

Conclusion

Our data suggested that TLR4 gene polymorphisms may be associated with a decreased risk of GC in Chinese population. And these SNPs and their combined effects with environmental factors may be associated with the risk of GC.  相似文献   

6.

Background

Patients with acute myeloid leukemia (AML) who undergo induction chemotherapy are at high risk for invasive fungal disease (IFD). Dectin-1, a C-type lectin family member represents one of the most important pattern recognition receptors of the innate immune system and single nucleotide polymorphisms (SNPs) in the Dectin-1 gene have been associated with an increased risk of infectious complications. We sought to investigate the impact of three different Dectin-1 SNPs and one TLR2 SNP on developing IFD in 186 adult patients with newly diagnosed AML following anthracycline-based induction chemotherapy.

Patients and methods

Genotyping of Dectin-1 SNPs (rs16910526, rs3901533 and rs7309123) and TLR2 SNP (rs5743708) was performed by TaqMan method and pyrosequencing. IFD was defined according to the EORTC/MSG consensus guidelines. Multiple logistic regression analyses were applied to evaluate the association between the polymorphisms and the occurrence of pulmonary infections. Dectin-1 expression studies with SNP genotyped human monocytes were performed to elucidate susceptibility to IFD following chemotherapy.

Results

We could demonstrate that patients carrying the Dectin-1 SNP rs7309123 G/G (n = 47) or G/G and C/G (n = 133) genotype revealed a significant higher risk for developing both pneumonia in general (adjusted odds ratio (OR): 2.5; p = 0.014 and OR: 3.0, p = 0.004) and pulmonary IFD (OR: 2.6; p = 0.012 and OR: 2.4, p = 0.041, respectively). Patients carrying the TLR2 SNP rs5743708 (R753Q, GA/AA genotype, n = 12) also revealed a significantly higher susceptibility to pneumonia including IFD. Furthermore, Dectin-1 mRNA expression in human monocytes was lower following chemotherapy.

Conclusion

To our best knowledge, this study represents the first analysis demonstrating that harbouring polymorphisms of Dectin-1 (rs7309123) or TLR2 (rs5743708) represents an independent risk factor of developing IFD in patients with AML undergoing induction chemotherapy.  相似文献   

7.
The insulin-like growth factor binding protein acid labile subunit (IGFALS) gene encodes a serum protein that binds to IGFs and regulates growth, development, and other physiological processes. We have found that sequencing of the IGFALS gene in Chinese Qinchuan beef cattle (n = 300) revealed four SNP loci in exon two of the gene (g1219: T>C, g1893: T>C, g2612: G>A, and g2696: A>G). The SNP g2696: A>G resulted in a change from asparagine to aspartic acid (p. N574D) in the leucine-rich repeat region in the carboxyl-terminal domain of IGFALS. Four SNPs were in low linkage disequilibrium, and 12 different haplotypes were identified in the population. Association analysis suggested that SNP g1219: T>C had a significant association with hip width (P < 0.05) and SNP g2696: A>G displayed a significant association with stature (P < 0.05). The results from our investigation indicated that polymorphisms in the IGFALS gene were associated with growth traits of bovine, and may serve as a genetic marker for selection of beef cattle for growth traits, including stature.  相似文献   

8.

Background

Mycobacterium avium subsp. paratuberculosis (MAP), the causative bacterium of Johne’s disease in dairy cattle, is widespread in the Canadian dairy industry and has significant economic and animal welfare implications. An understanding of the population dynamics of MAP can be used to identify introduction events, improve control efforts and target transmission pathways, although this requires an adequate understanding of MAP diversity and distribution between herds and across the country. Whole genome sequencing (WGS) offers a detailed assessment of the SNP-level diversity and genetic relationship of isolates, whereas several molecular typing techniques used to investigate the molecular epidemiology of MAP, such as variable number of tandem repeat (VNTR) typing, target relatively unstable repetitive elements in the genome that may be too unpredictable to draw accurate conclusions. The objective of this study was to evaluate the diversity of bovine MAP isolates in Canadian dairy herds using WGS and then determine if VNTR typing can distinguish truly related and unrelated isolates.

Results

Phylogenetic analysis based on 3,039 SNPs identified through WGS of 124 MAP isolates identified eight genetically distinct subtypes in dairy herds from seven Canadian provinces, with the dominant type including over 80% of MAP isolates. VNTR typing of 527 MAP isolates identified 12 types, including “bison type” isolates, from seven different herds. At a national level, MAP isolates differed from each other by 1–2 to 239–240 SNPs, regardless of whether they belonged to the same or different VNTR types. A herd-level analysis of MAP isolates demonstrated that VNTR typing may both over-estimate and under-estimate the relatedness of MAP isolates found within a single herd.

Conclusions

The presence of multiple MAP subtypes in Canada suggests multiple introductions into the country including what has now become one dominant type, an important finding for Johne’s disease control. VNTR typing often failed to identify closely and distantly related isolates, limiting the applicability of using this typing scheme to study the molecular epidemiology of MAP at a national and herd-level.  相似文献   

9.
10.
11.
The objective of this study was to identify genetic markers and genomic regions associated with susceptibility to Mycobacterium avium ssp. paratuberculosis (MAP) infection in Holstein cattle. Associated single nucleotide polymorphisms (SNPs) were identified by genotyping 521 MAP‐infected Holstein cows and comparing SNP allele frequencies of these infected cows with allele frequencies estimated from specific reference populations. Reference population allele frequency estimates used Holstein sire genotype data and were weighted estimates based on sire usage within the population in question. The 521 infected cows were 233 and 288 cows from two resource populations of approximately 5000 cows each, collected independently. Population 1 was comprised primarily of daughters of twelve Holstein artificial insemination sires used heavily within the US dairy cattle population. Samples were obtained from 300 co‐operating commercial dairy herds throughout the US and were tested by both MAP faecal culture and blood‐enzyme‐linked immunosorbent assay (ELISA). Population 2 consisted of dairy cattle from six co‐operating dairy herds in Wisconsin, with all animals in the herds tested by blood enzyme‐linked immunosorbent assay (ELISA) for MAP infection. Genotyping was performed with the Illumina Bovine SNP50 Bead Chip, providing genotypes for 35 772 informative SNPs. Data from the two resource populations were analysed both in separate and combined analyses. The most significant autosomal markers from the individual and combined analyses (n = 197, nominal P < 0.001) were used in a stepwise logistic regression analysis to identify a set of 51 SNPs that could be used as a predictor of genetics for Holstein cattle susceptibility to MAP infection.  相似文献   

12.
Few intraspecific genetic linkage maps have been reported for cultivated tomato, mainly because genetic diversity within Solanum lycopersicum is much less than that between tomato species. Single nucleotide polymorphisms (SNPs), the most abundant source of genomic variation, are the most promising source of polymorphisms for the construction of linkage maps for closely related intraspecific lines. In this study, we developed SNP markers based on expressed sequence tags for the construction of intraspecific linkage maps in tomato. Out of the 5607 SNP positions detected through in silico analysis, 1536 were selected for high-throughput genotyping of two mapping populations derived from crosses between ‘Micro-Tom’ and either ‘Ailsa Craig’ or ‘M82’. A total of 1137 markers, including 793 out of the 1338 successfully genotyped SNPs, along with 344 simple sequence repeat and intronic polymorphism markers, were mapped onto two linkage maps, which covered 1467.8 and 1422.7 cM, respectively. The SNP markers developed were then screened against cultivated tomato lines in order to estimate the transferability of these SNPs to other breeding materials. The molecular markers and linkage maps represent a milestone in the genomics and genetics, and are the first step toward molecular breeding of cultivated tomato. Information on the DNA markers, linkage maps, and SNP genotypes for these tomato lines is available at http://www.kazusa.or.jp/tomato/.  相似文献   

13.
BackgroundThe sequencing of two members of the Royal Kelantan Malay family genomes will provide insights on the Kelantan Malay whole genome sequences. The two Kelantan Malay genomes were analyzed for the SNP markers associated with thalassemia and Helicobacter pylori infection. Helicobacter pylori infection was reported to be low prevalence in the north-east as compared to the west coast of the Peninsular Malaysia and beta-thalassemia was known to be one of the most common inherited and genetic disorder in Malaysia.ResultBy combining SNP information from literatures, GWAS study and NCBI ClinVar, 18 unique SNPs were selected for further analysis. From these 18 SNPs, 10 SNPs came from previous study of Helicobacter pylori infection among Malay patients, 6 SNPs were from NCBI ClinVar and 2 SNPs from GWAS studies. The analysis reveals that both Royal Kelantan Malay genomes shared all the 10 SNPs identified by Maran (Single Nucleotide Polymorphims (SNPs) genotypic profiling of Malay patients with and without Helicobacter pylori infection in Kelantan, 2011) and one SNP from GWAS study. In addition, the analysis also reveals that both Royal Kelantan Malay genomes shared 3 SNP markers; HBG1 (rs1061234), HBB (rs1609812) and BCL11A (rs766432) where all three markers were associated with beta-thalassemia.ConclusionsOur findings suggest that the Royal Kelantan Malays carry the SNPs which are associated with protection to Helicobacter pylori infection. In addition they also carry SNPs which are associated with beta-thalassemia. These findings are in line with the findings by other researchers who conducted studies on thalassemia and Helicobacter pylori infection in the non-royal Malay population.  相似文献   

14.
Classical hereditary hemochromatosis involves the HFE-gene and diagnostic analysis of the DNA variants HFE p.C282Y (c.845G > A; rs1800562) and HFE p.H63D (c.187C > G; rs1799945). The affected protein alters the iron homeostasis resulting in iron overload in various tissues. The aim of this study was to validate the TaqMan-based Sample-to-SNP protocol for the analysis of the HFE-p.C282Y and p.H63D variants with regard to accuracy, usefulness and reproducibility compared to an existing SNP protocol. The Sample-to-SNP protocol uses an approach where the DNA template is made accessible from a cell lysate followed by TaqMan analysis. Besides the HFE-SNPs other eight SNPs were used as well. These SNPs were: Coagulation factor II-gene F2 c.20210G > A, Coagulation factor V-gene F5 p.R506Q (c.1517G > A; rs121917732), Mitochondria SNP: mt7028 G > A, Mitochondria SNP: mt12308 A > G, Proprotein convertase subtilisin/kexin type 9-gene PCSK9 p.R46L (c.137G > T), Plutathione S-transferase pi 1-gene GSTP1 p.I105V (c313A > G; rs1695), LXR g.-171 A > G, ZNF202 g.-118 G > T. In conclusion the Sample-to-SNP kit proved to be an accurate, reliable, robust, easy to use and rapid TaqMan-based SNP detection protocol, which could be quickly implemented in a routine diagnostic or research facility.  相似文献   

15.

Background

Previous genome-wide association analyses identified QTL regions in the X chromosome for percentage of normal sperm and scrotal circumference in Brahman and Tropical Composite cattle. These traits are important to be studied because they are indicators of male fertility and are correlated with female sexual precocity and reproductive longevity. The aim was to investigate candidate genes in these regions and to identify putative causative mutations that influence these traits. In addition, we tested the identified mutations for female fertility and growth traits.

Results

Using a combination of bioinformatics and molecular assay technology, twelve non-synonymous SNPs in eleven genes were genotyped in a cattle population. Three and nine SNPs explained more than 1% of the additive genetic variance for percentage of normal sperm and scrotal circumference, respectively. The SNPs that had a major influence in percentage of normal sperm were mapped to LOC100138021 and TAF7L genes; and in TEX11 and AR genes for scrotal circumference. One SNP in TEX11 was explained ~13% of the additive genetic variance for scrotal circumference at 12 months. The tested SNP were also associated with weight measurements, but not with female fertility traits.

Conclusions

The strong association of SNPs located in X chromosome genes with male fertility traits validates the QTL. The implicated genes became good candidates to be used for genetic evaluation, without detrimentally influencing female fertility traits.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1595-0) contains supplementary material, which is available to authorized users.  相似文献   

16.

Background

Some single nucleotide polymorphisms (SNP), located in Toll-like receptor (TLR) genes, were reported to be associated with human cytomegalovirus (HCMV) infections. The study was aimed to assess the correlation of SNPs at TLR4 and TLR9 genes with the occurrence of congenital cytomegaly, based on available samples.

Methods

Reported case-control study included both HCMV infected and non-infected fetuses and newborns. The specimens were classified to the molecular analyses, based on serological features of the recent infection and HCMV DNAemia in body fluids. TLR SNPs were studied, using multiplex nested PCR-RFLP assay, and determined genotypes were confirmed by sequencing. Hardy-Weinberg equilibrium was assessed for the identified genotypes. The linkage disequilibrium was also estimated for TLR4 SNPs. A relationship between the status of TLR genotypes and congenital cytomegaly development was estimated, using a logistic regression model.

Results

Hardy Weinberg equilibrium was observed for almost all SNPs, both infected and non-infected patients, with exception of TLR4 896 A>G polymorphism in the control group (P≤0.050). TLR4 896 A>G and 1196 C>T SNPs were found in linkage disequilibrium in both study groups (P≤0.050). The CC genotype at TLR4 1196 SNP and the GA variant at TLR9 2848 G>A SNP were significantly associated with HCMV infection (P≤0.050). The risk of congenital cytomegaly was higher in heterozygotes at TLR9 SNP than in the carriers of other genotypic variants at the reported locus (OR 4.81; P≤0.050). The GC haplotype at TLR4 SNPs and GCA variants at TLR4 and TLR9 SNPs were significantly associated with HCMV infection (P≤0.0001). The ACA variants were more frequent among fetuses and neonates with symptomatic, rather than asymptomatic cytomegaly (P≤0.0001).

Conclusions

TLR4 and TLR9 polymorphisms may contribute to the development of congenital infection with HCMV in fetuses and neonates. The TLR9 2848 GA heterozygotic status possibly predisposes to HCMV infection, increasing the risk of congenital cytomegaly development.  相似文献   

17.
18.
This study was designed to investigate the candidate single nucleotide polymorphisms (SNPs) in the exon’s region of bovine diacylglycerol O-acyltransferase (DGAT1) gene using bioinformatics and experimental methods. A total of 17 SNPs were screened from public data resources and DNA sequencing. Three SNPs (c.572A>G, c.1241C>T and c.1416T>G) of these candidate SNPs were genotyped by created restriction site-polymerase chain reaction (CRS-PCR) methods. The gene-specific SNP markers and their effects on meat and carcass fatness quality traits were evaluated in Chinese commercial cattle. The c.572A>G and c.1416T>G significantly effected on backfat thickness, longissimus muscle area, marbling score, fat color and Warner-Bratzler shear force. No significant association was detected between the c.1241C>T and measured traits. Results from this study suggested that the SNP markers may be effective for the marker-assisted selection of meat and carcass fatness quality traits, and added new evidence that DGAT1 gene is an important candidate gene for the improvement of meat and carcass fatness quality in beef cattle industry.  相似文献   

19.
Toll-like receptor 9 (TLR9) recognizes non-methylated viral CpG-containing DNA and serves as a pattern recognition receptor that signals the presence of human cytomegalovirus (HCMV). Here, we present the genotype distribution of single-nucleotide polymorphisms (SNPs) of the TLR9 gene in infants and the relationship between TLR9 polymorphisms and HCMV infection. Four polymorphisms (-1237T/C, rs5743836; -1486T/C, rs187084; 1174G/A, rs352139; and 2848C/T, rs352140) in the TLR9 gene were genotyped in 72 infants with symptomatic HCMV infection and 70 healthy individuals. SNP genotyping was performed by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Digested fragments were separated and identified by capillary electrophoresis. The HCMV DNA copy number was measured by a quantitative real-time PCR assay. We found an increased frequency of heterozygous genotypes TLR9 -1486T/C and 2848C/T in infants with HCMV infection compared with uninfected cases. Heterozygous variants of these two SNPs increased the risk of HCMV disease in children (P = 0.044 and P = 0.029, respectively). In infants with a mutation present in at least one allele of -1486T/C and 2848C/T SNPs, a trend towards increased risk of cytomegaly was confirmed after Bonferroni’s correction for multiple testing (Pc = 0.063). The rs352139 GG genotype showed a significantly reduced relative risk for HCMV infection (Pc = 0.006). In contrast, the -1237T/C SNP was not related to viral infection. We found no evidence for linkage disequilibrium with the four examined TLR9 SNPs. The findings suggest that the TLR9 -1486T/C and 2848C/T polymorphisms could be a genetic risk factor for the development of HCMV disease.  相似文献   

20.

BACKGROUND:

Coronary artery disease (CAD) is a leading cause of death in the United States. South Asian immigrants (SAIs) from the Indian subcontinent living in the US are disproportionately at higher risk of CAD than other immigrant populations. Unique genetic factors may predispose SAIs to increased risk of developing CAD when adopting a Western lifestyle including a higher-fat diet, more sedentary behavior and additional gene-environment interactions. SAIs are known to have low levels of the protective high density lipoprotein (HDL) and an altered function for Apo-lipoprotein A-1 (ApoA1), the main protein component of HDL cholesterol. One gene that may be genetically distinctive in this population is APOA1 which codes for ApoA-1 protein, a potentially important contributing factor in the development of CAD.

MATERIALS AND METHODS:

DNA sequencing was performed to determine the status of the seven single-nucleotide polymorphisms (SNPs) in the APOA1 gene from 94 unrelated SAI adults. Genotypes, allelic frequencies, and intragenic linkage disequilibrium of the APOA1 SNPs were calculated.

RESULTS:

Several polymorphisms and patterns were common among persons of south Asian ethnicity. Frequencies for SNPs T655C, T756C and T1001C were found to be different than those reported in European Caucasian individuals. Linkage disequilibrium was found to be present between most (13 of 15) SNP pairings indicating common inheritance patterns.

CONCLUSIONS:

SAIs showed variability in the sequence of the APOA1 gene and linkage disequilibrium for most SNPS. This pattern of APOA1 SNPs may contribute to decreased levels of HDL cholesterol reported in SAIs, leading to an increased risk for developing CAD in this population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号