首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Statins, the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors with cholesterol-lowering properties, were recently shown to exhibit anti-cancer effects. However, the molecular mechanism underlying statin-induced cancer cell death remains to be elucidated. Elevated level of survivin is often found over-expressed in human cancers and has been implicated in the progression of tumorigenesis. Given its central role in cell division and action as an apoptosis suppressor, survivin represents a potential molecular target in cancer management.

Methods

In this study, we explored the underlying mechanisms in simvastatin-induced HCT116 colorectal cancer cell apoptosis.

Results

Simvastatin decreased cell viability and induced cell apoptosis in HCT116 cells. These results are associated with the modulation of p21cip/Waf1 and survivin. Survivin knockdown using survivin siRNAs also decreased cell viability and induced cell apoptosis. Simvastatin's actions on p21cip/Waf1, survivin and apoptosis were reduced in p53 null HCT116 cells. Simvastatin caused an increase in p53 phosphorylation and acetylation. In addition, simvastatin activated p38 mitogen-activated protein kinase (p38MAPK), whereas an inhibitor of p38MAPK signaling abrogated simvastatin's effects of increasing p53 and p21cip/Waf1 promoter luciferase activity. Cell viability and survivin promoter luciferase activity in the presence of simvastatin were also restored by p38MAPK inhibitor. Furthermore, Sp1 binding to the survivin promoter region decreased while p53 and p63 binding to the promoter region increased after simvastatin exposure.

Conclusions

Simvastatin activates the p38MAPK-p53-survivin cascade to cause HCT116 colorectal cancer cell apoptosis.

General significance

This study delineates, in part, the underlying mechanisms of simvastatin in decreasing survivin and subsequent colorectal cancer cell apoptosis.  相似文献   

2.
Phillips AC  Holland AJ 《PloS one》2011,6(12):e28618

Objective

To investigate, using accelerometers, the levels of physical activity being undertaken by individuals with intellectual disabilities with and without Down''s syndrome.

Methods

One hundred and fifty two individuals with intellectual disabilities aged 12–70 years from East and South-East England. Physical activity levels in counts per minute (counts/min), steps per day (steps/day), and minutes of sedentary, light, moderate, vigorous, and moderate to vigorous physical activity (MVPA) measured with a uni-axial accelerometer (Actigraph GT1M) for seven days.

Results

No individuals with intellectual disabilities met current physical activity recommendations. Males were more active than females. There was a trend for physical activity to decline and sedentary behaviour to increase with age, and for those with more severe levels of intellectual disability to be more sedentary and less physically active, however any relationship was not significant when adjusted for confounding variables. Participants with Down''s syndrome engaged in significantly less physical activity than those with intellectual disabilities without Down''s syndrome and levels of activity declined significantly with age.

Conclusions

Individuals with intellectual disabilities, especially those with Down''s syndrome may be at risk of developing diseases associated with physical inactivity. There is a need for well-designed, accessible, preventive health promotion strategies and interventions designed to raise the levels of physical activity for individuals with intellectual disabilities. We propose that there are physiological reasons why individuals with Down''s syndrome have particularly low levels of physical activity that also decline markedly with age.  相似文献   

3.

BACKGROUND:

Down''s syndrome is an important congenital chromosomal disorder that can be seen around the world. The antenatal screening for this disorder is an important processing in present obstetrics.

OBJECTIVE:

Due to the concept of first do no harm, the use of noninvasive test is recommended. The triple marker screening test has been introduced for a few years and acceptable for its efficacy.

RESULT:

However, an important concern is on its cost-effectiveness. Here, the author analyze and present the cost-effectiveness of the triple markers serum screening for Down''s syndrome in Thai setting.

CONCLUSION:

According to this work, the cost per effectiveness of triple markers serum screening is slightly lower than standard amniocentesis test.  相似文献   

4.

Background

In a previous study, we deleted three aldehyde dehydrogenase (ALDH) genes, involved in ethanol metabolism, from yeast Saccharomyces cerevisiae and found that the triple deleted yeast strain did not grow on ethanol as sole carbon source. The ALDHs were NADP dependent cytosolic ALDH1, NAD dependent mitochondrial ALDH2 and NAD/NADP dependent mitochondrial ALDH5. Double deleted strain ΔALDH2+ΔALDH5 or ΔALDH1+ΔALDH5 could grow on ethanol. However, the double deleted strain ΔALDH1+ΔALDH2 did not grow in ethanol.

Methods

Triple deleted yeast strain was used. Mitochondrial NAD dependent ALDH from yeast or human was placed in yeast cytosol.

Results

In the present study we found that a mutant form of cytoplasmic ALDH1 with very low activity barely supported the growth of the triple deleted strain (ΔALDH1+ΔALDH2+ΔALDH5) on ethanol. Finding the importance of NADP dependent ALDH1 on the growth of the strain on ethanol we examined if NAD dependent mitochondrial ALDH2 either from yeast or human would be able to support the growth of the triple deleted strain on ethanol if the mitochondrial form was placed in cytosol. We found that the NAD dependent mitochondrial ALDH2 from yeast or human was active in cytosol and supported the growth of the triple deleted strain on ethanol.

Conclusion

This study showed that coenzyme preference of ALDH is not critical in cytosol of yeast for the growth on ethanol.

General significance

The present study provides a basis to understand the coenzyme preference of ALDH in ethanol metabolism in yeast.  相似文献   

5.

Background

Microbial antibiotic resistance is a challenging medical problem nowadays. Two scorpion peptides displaying antibiotic activity: hadrurin and vejovine were taken as models for the design of novel shorter peptides with similar activity.

Methods

Using the standard Fmoc-based solid phase synthesis technique of Merrifield twelve peptides (18 to 29 amino acids long) were synthesized, purified and assayed against a variety of multi-drug resistant Gram-negative bacteria from clinical isolates. Hemolytic and antiparasitic activities of the peptides and their possible interactions with eukaryotic cells were verified. Release of the fluorophore calcein from liposomes treated with these peptides was measured.

Results

A peptide with sequence GILKTIKSIASKVANTVQKLKRKAKNAVA), and three analogs: Δ(Α29), Δ(K12-Q18; Ν26−Α29), and K4N Δ(K12-Q18; Ν26−Α29) were shown to inhibit the growth of Gram-negative (E. coli ATCC25922) and Gram-positive bacteria (S. aureus), as well as multi-drug resistant (MDR) clinical isolated. The antibacterial and antiparasitic activities were found with peptides at 0.78 to 25 μM and 5 to 25 μM concentration, respectively. These peptides have low cytotoxic and hemolytic activities at concentrations significantly exceeding their minimum inhibitory concentrations (MICs), showing values between 40 and 900 μM for their EC50, compared to the parent peptides vejovine and hadrurin that at the same concentration of their MICs lysed more than 50% of human erythrocytes cells.

Conclusions

These peptides promise to be good candidates to combat infections caused by Gram-negative bacteria from nosocomial infections.

General significance

Our results confirm that well designed synthetic peptides can be an alternative for solving the lack of effective antibiotics to control bacterial infections.  相似文献   

6.

Background

Microduplication at 17p13.3 and microdeletion at 21q22 are both rare chromosomal aberrations. The presence of both genomic imbalances in one patient has not been previously reported in literature. In this study, we performed a molecular diagnostic testing with a whole genome microarray on a 3-year-old boy with developmental delay, mental retardation and multiple malformations.

Methods

A routine G-banding karyotype analysis was performed using peripheral lymphocytes. Chromosome microarray analysis (CMA) was done using Affymetrix CytoScan™ HD array. Genomic imbalances were further confirmed by multiple ligation-dependent probe amplification (MLPA).

Results

The result of karyotyping was normal but CMA detected a 9.8 Mb microduplication at 17p13.3–13.1 (chr17: 1–9,875,545) and a 2.8 Mb microdeletion involving 21q22.3–qter (chr21: 45,239,077–48,097,372). The imbalances were due to a balanced translocation present in patient's mother. The patient was characterized with short stature, profound developmental delay, non-verbal, intellectual disability as well as craniofacial dysmorphism, subtle brain structural anomaly and sparse scalp hair.

Conclusions

This is the first patient reported with a combination of a microduplication at 17p13.3–13.1 and a microdeletion at 21q22.3–qter. Both genomic imbalances were undetected by conventional karyotyping but were delineated with CMA test. Synergistic effect from the two rare genomic imbalances is likely responsible for the severe clinical phenotypes observed in this patient.  相似文献   

7.

Background

Hereditary optic neuropathies (HONs) are a heterogeneous group of disorders that affect retinal ganglion cells (RGCs) and axons that form the optic nerve. Leber's Hereditary Optic Neuropathy and the autosomal dominant optic atrophy related to OPA1 mutations are the most common forms. Nonsyndromic autosomal recessive optic neuropathies are rare and their existence has been long debated. We recently identified the first gene responsible for these conditions, TMEM126A. This gene is highly expressed in retinal cellular compartments enriched in mitochondria and supposed to encode a mitochondrial transmembrane protein of unknown function.

Methods

A specific polyclonal antibody targeting the TMEM126A protein has been generated. Quantitative fluorescent in situ hybridization, cellular fractionation, mitochondrial membrane association study, mitochondrial sub compartmentalization analysis by both proteolysis assays and transmission electron microscopy, and expression analysis of truncated TMEM126A constructs by immunofluorescence confocal microscopy were carried out.

Results

TMEM126A mRNAs are strongly enriched in the vicinity of mitochondria and encode an inner mitochondrial membrane associated cristae protein. Moreover, the second transmembrane domain of TMEM126A is required for its mitochondrial localization.

Conclusions

TMEM126A is a mitochondrial located mRNA (MLR) that may be translated in the mitochondrial surface and the protein is subsequently imported to the inner membrane. These data constitute the first step toward a better understanding of the mechanism of action of TMEM126A in RGCs and support the importance of mitochondrial dysfunction in the pathogenesis of HON.

General significance

Local translation of nuclearly encoded mitochondrial mRNAs might be a mechanism for rapid onsite supply of mitochondrial membrane proteins.  相似文献   

8.

Background

Recently, particle bombardment has become increasingly popular as a transfection method, because of a reduced dependency on target cell characteristics. In this study, we evaluated in vitro gene transfer by particle bombardment.

Methods

gWIZ luciferase and gWIZ green fluorescent protein (GFP) plasmids were used as reporter genes. Mammalian cell lines HEK 293, MCF7 and NIH/3T3 were used in the transfection experiments. Transfection was performed by bombardment of the cells with gene-coated gold particles using the Helios Gene Gun. The technology was assessed by analyzing gene expression and cell damage. Cell damage was evaluated by MTT assay.

Results

This technology resulted in efficient in vitro transfection, even in the cells which are difficult to transfect. The gene expression was dependent on the gene gun's helium pressure, the sizes of the gold particles, the amount of the particles and DNA loading, while cell viability was mostly dependent on helium pressure and amount of the gold particles.

Conclusions

This technology was useful to transfection of cells. Optimal transfection conditions were determined to be between 75 and 100 psi of helium pressure, 1.0 to 1.6 μm gold particle size and 0.5 mg of gold particle amount with a loading ratio of 4 μg DNA/mg gold particles.

General significance

These findings will be useful in the design of gene gun device, and bring further improvements to the in vitro and in vivo transfection studies including gene therapy and vaccination.  相似文献   

9.

Background

We have previously demonstrated that mitochondrial bioenergetic deficits precede Alzheimer's pathology in the female triple transgenic Alzheimer's (3xTgAD) mouse model. Herein, we sought to determine the impact of reproductive senescence on mitochondrial function in the normal non-transgenic (nonTg) and 3xTgAD female mouse model of AD.

Methods

Both nonTg and 3xTgAD female mice at 3, 6, 9, and 12 months of age were sacrificed and mitochondrial bioenergetic profile as well as oxidative stress markers were analyzed.

Results

In both nonTg and 3xTgAD mice, reproductive senescence paralleled a significant decline in PDH, and Complex IV cytochrome c oxidase activity and mitochondrial respiration. During the reproductive senescence transition, both nonTg and 3xTgAD mice exhibited greater individual variability in bioenergetic parameters suggestive of divergent bioenergetic phenotypes. Following transition through reproductive senescence, enzymes required for long-chain fatty acid (HADHA) and ketone body (SCOT) metabolism were significantly increased and variability in cytochrome c oxidase (Complex IV) collapsed to cluster at a ∼ 40% decline in both the nonTg and 3xTgAD brain which was indicative of alternative fuel generation with concomitant decline in ATP generation.

Conclusions

These data indicate that reproductive senescence in the normal nonTg female brain parallels the shift to ketogenic/fatty acid substrate phenotype with concomitant decline in mitochondrial function and exacerbation of bioenergetic deficits in the 3xTgAD brain.

General significance

These findings provide a plausible mechanism for increased life-time risk of AD in postmenopausal women and suggest an optimal window of opportunity to prevent or delay decline in bioenergetics during reproductive senescence.  相似文献   

10.

Background

The neurodegenerative disease Friedreich's ataxia is the result of frataxin deficiency. Frataxin is a mitochondrial protein involved in iron–sulfur cluster (Fe–S) cofactor biogenesis, but its functional role in this pathway is debated. This is due to the interconnectivity of iron metabolic and oxidative stress response pathways that make distinguishing primary effects of frataxin deficiency challenging. Since Fe–S cluster assembly is conserved, frataxin overexpression phenotypes in a simple eukaryotic organism will provide additional insight into frataxin function.

Methods

The Schizosaccharomyces pombe frataxin homologue (fxn1) was overexpressed from a plasmid under a thiamine repressible promoter. The S. pombe transformants were characterized at several expression strengths for cellular growth, mitochondrial organization, iron levels, oxidative stress, and activities of Fe–S cluster containing enzymes.

Results

Observed phenotypes were dependent on the amount of Fxn1 overexpression. High Fxn1 overexpression severely inhibited S. pombe growth, impaired mitochondrial membrane integrity and cellular respiration, and led to Fxn1 aggregation. Cellular iron accumulation was observed at moderate Fxn1 overexpression but was most pronounced at high levels of Fxn1. All levels of Fxn1 overexpression up-regulated oxidative stress defense and mitochondrial Fe–S cluster containing enzyme activities.

Conclusions

Despite the presence of oxidative stress and accumulated iron, activation of Fe–S cluster enzymes was common to all levels of Fxn1 overexpression; therefore, Fxn1 may regulate the efficiency of Fe–S cluster biogenesis in S. pombe.

General Significance

We provide evidence that suggests that dysregulated Fe–S cluster biogenesis is a primary effect of both frataxin overexpression and deficiency as in Friedreich's ataxia.  相似文献   

11.

Context

The deficiency of steroid 11β-hydroxylase is caused by mutations in the CYP11B1 gene and is the second major form of congenital adrenal hyperplasia associated with hypertension.

Objective

The objective of this study was to screen the CYP11B1 gene for mutations in one Vietnamese male suffering from congenital adrenal hyperplasia.

Patient

The patient (46,XY) had congenital adrenal hyperplasia. The clinical manifestations presented precocious puberty, hyper-pigmentation and high blood pressure at 4 years.

Results

The patient was a homozygous carrier of a novel mutation located in exon 7 containing a premature stop codon instead of tyrosine at 395 (p.Y395X).

Conclusion

We have identified a novel mutant of the CYP11B1 gene in one Vietnamese family associated with phenotypes of congenital adrenal hyperplasia. The mutant gene p.Y395X produces a truncated form of the polypeptide and abolishes the enzyme activities, leading to a severe phenotype of congenital adrenal hyperplasia.  相似文献   

12.

Background

Morphine has been shown to affect the function of immune system, but the precise mechanism remains to be elucidated. The present study was aimed to clarify the mechanism for the morphine-induced immune suppression by analyzing the direct effect of morphine on human CD3+ T cells.

Methods

To identify genes up-regulated by action of morphine on the opioid receptor expressed in CD3+ T cells, PCR-select cDNA subtraction was performed by the use of total RNA from human CD3+ T cells treated with morphine in the presence and absence of naloxone.

Results

We show that p53 and damage-specific DNA binding protein 2 (ddb2) genes are up-regulated by morphine in a naloxone-sensitive manner. Furthermore, the results indicate that DNA damage, quantified by apurinic–apyrimidinic site counting assay and phosphorylation of Ser-15 in P53 protein, is induced in CD3+ T cells by morphine in a naloxone-sensitive manner.

General significance

Because it was shown that only the κ opioid receptor gene is expressed in CD3+ T cells in the opioid receptor family, the present study suggests that morphine induces DNA damage through the action on the κ opioid receptor, which leads to immune suppression by activation of P53-mediated signal transduction.  相似文献   

13.

Background

The deposition of self-assembled amyloidogenic proteins is associated with multiple diseases, including Alzheimer's disease, Parkinson's disease and type 2 diabetes mellitus. The toxic misfolding and self-assembling of amyloidogenic proteins are believed to underlie protein misfolding diseases. Novel drug candidates targeting self-assembled amyloidogenic proteins represent a potential therapeutic approach for protein misfolding diseases.

Scope of review

In this perspective review, we provide an overview of the recent progress in identifying inhibitors that block the aggregation of amyloidogenic proteins and the clinical applications thereof.

Major conclusions

Compounds such as polyphenols, certain short peptides, and monomer- or oligomer-specific antibodies, can interfere with the self-assembly of amyloidogenic proteins, prevent the formation of oligomers, amyloid fibrils and the consequent cytotoxicity.

General significance

Some inhibitors have been tested in clinical trials for treating protein misfolding diseases. Inhibitors that target the aggregation of amyloidogenic proteins bring new hope to therapy for protein misfolding diseases.  相似文献   

14.
Lv Z  Zhang X  Liu L  Chen J  Nie Z  Sheng Q  Zhang W  Jiang C  Yu W  Wang D  Wu X  Zhang S  Li J  Zhang Y 《Gene》2012,502(2):118-124

Background

Prohibitin (PHB) is an evolutionarily conserved multifunctional protein with ubiquitous expression. However, its molecular roles are largely unknown.

Methods

To better understand the function of prohibitin protein in silkworm (BmPHB), its coding sequence was isolated from a cDNA library of silkworm pupae. An His-tagged BmPHB fusion protein was expressed in Escherichia coli Rosetta (DE3) and purified with affinity and reversed-phase chromatography. Purified rBmPHB was used to generate anti-BmPHB polyclonal antibody. The subcellular localization of BmPHB was analysed by immunohistochemistry.

Results

BmPHB gene has an ORF of 825 bp, encoding a predicted peptide with 274 amino acid residues. Immunostaining indicate that prohibitin is expressed in nucleus and predominately in cytoplasm. Western blot analyses indicated that, in the fifth instar larva, BmPHB was expressed descendingly in gonad, malpighian tubule, trachea, fatty body, intestine, and head. However, no expression was detected in larva's silk gland and epidermis. In addition, BmPHB was expressed in the nascent egg, larva and pupa, but not in the moth.

Conclusions

The expression of BmPHB gene presents differential characteristic in different stage and tissues. It may play important roles in the development of silkworm.

General significance

Studies on prohibitin have been still restricted to a few specific insects and insect cell lines such as Drosophila, Acyrthosiphon pisum and mosquito cell lines, not yet in silkworm. This is a first characterization of prohibitin in silkworm, B. mori.  相似文献   

15.
16.

Background

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED) is an autosomal recessive disease due to mutations of the autoimmune regulator (AIRE) gene. Typical manifestations include candidiasis, Addison's disease, and hypoparathyroidism. Type 1 diabetes, alopecia, vitiligo, ectodermal dystrophy, celiac disease and other intestinal dysfunctions, chronic atrophic gastritis, chronic active hepatitis, autoimmune thyroid disorders, pernicious anemia and premature ovarian failure are other rare associated diseases although other conditions have been associated with APECED.

Case presentation

What follows is the clinical, endocrinological and molecular data of a female APECED patient coming from Lithuania. The patient was affected by chronic mucocutaneous candidiasis, hypoparathyroidism and pre-clinical Addison's disease. Using direct sequencing of all the 14 exons of the AIRE gene in the patient's DNA, we identified in exon 6 the known mutation c.769 C>T (p.Arg257X) in compound heterozygosity with the newly discovered mutation c.1214delC (p.Pro405fs) in exon 10. The novel mutation results in a frameshift that is predicted to alter the sequence of the protein starting from amino acid 405 as well as to cause its premature truncation, therefore a non-functional Aire protein.

Conclusions

A novel mutation has been described in a patient with APECED with classical clinical components, found in compound heterozygosity with the c.769 C>T variation. Expanded epidemiological investigations based on AIRE gene sequencing are necessary to verify the relevancy of the novel mutation to APECED etiopathogenesis in the Lithuanian population and to prove its diagnostic efficacy in association with clinical and immunological findings.  相似文献   

17.

Background

Lectins are a diverse group of carbohydrate-binding proteins exhibiting numerous biological activities and functions.

Methods

Two-step serial carbohydrate affinity chromatography was used to isolate a lectin from the edible mushroom clouded agaric (Clitocybe nebularis). It was characterized biochemically, its gene and cDNA cloned and the deduced amino acid sequence analyzed. Its activity was tested by hemagglutination assay and carbohydrate-binding specificity determined by glycan microarray analysis. Its effect on proliferation of several human cell lines was determined by MTS assay.

Results

A homodimeric lectin with 15.9-kDa subunits agglutinates human group A, followed by B, O, and bovine erythrocytes. Hemagglutination was inhibited by glycoprotein asialofetuin and lactose. Glycan microarray analysis revealed that the lectin recognizes human blood group A determinant GalNAcα1–3(Fucα1–2)Galβ-containing carbohydrates, and GalNAcβ1–4GlcNAc (N,N'-diacetyllactosediamine). The lectin exerts antiproliferative activity specific to human leukemic T cells.

Conclusions

The protein belongs to the ricin B-like lectin superfamily, and has been designated as C. nebularis lectin (CNL). Its antiproliferative effect appears to be elicited by binding to carbohydrate receptors on human leukemic T cells.

General significance

CNL is one of the few mushroom ricin B-like lectins that have been identified and the only one so far shown to possess immunomodulatory properties.  相似文献   

18.

Objective

Individuals with chromosomal aneuploidies tend to develop malignancies. Telomerase is an enzyme complex that lengthens telomeres and has enhanced expression in numerous malignancies; one of its components is encoded by the TERC gene. In this study, we evaluated the TERC gene copy number in amniocytes from fetuses with aneuploidy, other than trisomy-21.

Methods

In this prospective, basic research study, fluorescence in situ hybridization (FISH) for the TERC gene (3q26) was applied to amniocytes retrieved from 14 fetuses with various aneuploidies and from a control group of 6 fetuses with a normal karyotype, to determine the TERC gene copy number.

Results

The percentage of cells with more than two copies of the TERC gene was lowest in the control group (x3 = 1.2 ± 0.4%; x4 = 0 ± 0%), higher in the sex chromosome aneuploidies (x3 = 4 ± 3%; x4 = 0.7 ± 0.95%) and even higher in trisomy 18 (x3 = 10.6 ± 2.3; x4 = 4.6 ± 1.8). The differences were statistically significant (P < 0.05).

Conclusion

The TERC gene copy number is increased in aneuploid amniocytes, which demonstrates their genetic instability and is presumably related to their tendency to develop malignancies.  相似文献   

19.
20.

Context

Molecular diagnosis of congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21OHD) has not been straightforward.

Objective

To conduct a comprehensive genetic analysis by Multiplex Ligation dependent Probe Amplification (MLPA) and evaluate its reliability for the molecular CAH-21OHD diagnosis.

Patients and methods

We studied 99 patients from 90 families with salt-wasting (SW; n = 32), simple-virilizing (SV; n = 29), and non-classical (NC; n = 29) CAH-21OHD. Molecular analysis was sequentially performed by detecting the most frequent point mutations by allele-specific oligonucleotide polymerase chain reaction (ASO-PCR), large rearrangements by MLPA, and rare mutations by direct sequencing. Parental segregation was evaluated.

Results

ASO-PCR detected microconversions in 164 alleles (91.1%). MLPA identified CYP21A1P large conversions to CYP21A2 in 7 of the remaining 16 (43.7%), 30-kb deletions including the 3′-end of CYP21A1P, C4B, and the 5′-end of CYP21A2 in 3 of the 16 (18.7%), and a complete CYP21A2 deletion in one (6.3%). Five alleles (2.7%) required direct sequencing; three mutations located in the CYP21A2 gene and two derived from CYP21A1P were found. No parental segregation was observed in patients with the c.329_336del and/or the CL6 cluster mutations. These cases were not diagnosed by ASO-PCR, but MLPA detected deletions in the promoter region of the CYP21A2 gene, explaining the genotype/phenotype dissociation.

Conclusion

Using the proposed algorithm, all alleles were elucidated. False-positive results in MLPA occurred when mutations or polymorphisms were located close to the probe-binding regions. These difficulties were overcome by the association of MLPA with ASO-PCR and paternal segregation. Using these approaches, we can successfully use MLPA in a cost-effective laboratory routine for the molecular diagnosis of CAH-21OHD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号