首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Akey DL  Malashkevich VN  Kim PS 《Biochemistry》2001,40(21):6352-6360
Coiled coils, estimated to constitute 3-5% of the encoded residues in most genomes, are characterized by a heptad repeat, (abcdefg)(n), where the buried a and d positions form the interface between multiple alpha-helices. Although generally hydrophobic, a substantial fraction ( approximately 20%) of these a- and d-position residues are polar or charged. We constructed variants of the well-characterized coiled coil GCN4-p1 with a single polar residue (Asn, Gln, Ser, or Thr) at either an a or a d position. The stability and oligomeric specificity of each variant were measured, and crystal structures of coiled-coil trimers with threonine or serine at either an a or a d position were determined. The structures show how single polar residues in the interface affect not only local packing, but also overall coiled-coil geometry as seen by changes in the Crick supercoil parameters and core cavity volumes.  相似文献   

2.
It is an important goal of computational biology to correctly predict the association state of a protein based on its amino acid sequence and the structures of known homologues. We have pursued this goal on the example of anthranilate phosphoribosyltransferase (AnPRT), an enzyme that is involved in the biosynthesis of the amino acid tryptophan. Firstly, known crystal structures of naturally occurring homodimeric AnPRTs were analyzed using the Protein Interfaces, Surfaces, and Assemblies (PISA) service of the European Bioinformatics Institute (EBI). This led to the identification of two hydrophobic “hot spot” amino acids in the protein-protein interface that were predicted to be essential for self-association. Next, in a comprehensive multiple sequence alignment (MSA), naturally occurring AnPRT variants with hydrophilic or charged amino acids in place of hydrophobic residues in the two hot spot positions were identified. Representative variants were characterized in terms of thermal stability, enzymatic activity, and quaternary structure. We found that AnPRT variants with charged residues in both hot spot positions exist exclusively as monomers in solution. Variants with hydrophilic amino acids in one hot spot position occur in both forms, monomer and dimer. The results of the present study provide a detailed characterization of the determinants of the AnPRT monomer-dimer equilibrium and show that analysis of hot spots in combination with MSAs can be a valuable tool in prediction of protein quaternary structures.  相似文献   

3.
The enzyme dUTPase is essential in preventing uracil incorporation into DNA. Design of antagonists against this novel chemotherapeutic target requires identification of species-specific differences in the structure and mechanism of the enzyme. This task is now approached via comparisons of available crystallographic structures of dUTPases from Homo sapiens, Escherichia coli, and retroviruses. The eukaryotic protein uniquely displays polar and charged amino acid residues participating in threefold intersubunit interactions. In bacterial and retroviral dUTPases, threefold interactions are mainly hydrophobic. The residues responsible for this contrast are mapped in multiple sequence alignment to positions differently and characteristically conserved in distinct evolutionary branches. The general feature of this contrast is further strengthened by a second eukaryotic model structure constructed using comparative modeling. The dUTPase cDNA from Drosophila melanogaster was identified, sequenced, and the model structure of the encoded polypeptide displayed a polar hydrogen-bonding network of threefold interactions, identically to the human structure. Results allow clear distinction between two subfamilies of trimeric dUTPases where altered subunit communication may account for a functional difference in the catalytic cycle.  相似文献   

4.
Wang JY  Lee HM  Ahmad S 《Proteins》2005,61(3):481-491
A multiple linear regression method was applied to predict real values of solvent accessibility from the sequence and evolutionary information. This method allowed us to obtain coefficients of regression and correlation between the occurrence of an amino-acid residue at a specific target and its sequence neighbor positions on the one hand, and the solvent accessibility of that residue on the other. Our linear regression model based on sequence information and evolutionary models was found to predict residue accessibility with 18.9% and 16.2% mean absolute error respectively, which is better than or comparable to the best available methods. A correlation matrix for several neighbor positions to examine the role of evolutionary information at these positions has been developed and analyzed. As expected, the effective frequency of hydrophobic residues at target positions shows a strong negative correlation with solvent accessibility, whereas the reverse is true for charged and polar residues. The correlation of solvent accessibility with effective frequencies at neighboring positions falls abruptly with distance from target residues. Longer protein chains have been found to be more accurately predicted than their smaller counterparts.  相似文献   

5.
Aligned amino acid sequences of three functionally independent samples of transmembrane (TM) transport proteins have been analyzed. The concept of TM-kernel is proposed as the most probable transmembrane region of a sequence. The average amino acid composition of TM-kernels differs from the published amino acid composition of transmembrane segments. TM-kernels contain more alanines, glycines, and less polar, charged, and aromatic residues in contrast to non-TM-proteins. There are also differences between TM-kernels of bacterial and eukaryotic proteins. We have constructed amino acid substitution matrices for bacterial TM-kernels, named the BATMAS (BActerial Transmembrane MAtrix of Substitutions) series. In TM-kernels, polar and charged residues, as well as proline and tyrosine, are highly conserved, whereas there are more substitutions within the group of hydrophobic residues, in contrast to non-TM-proteins that have fewer, relatively more conserved, hydrophobic residues. These results demonstrate that alignment of transmembrane proteins should be based on at least two amino acid substitution matrices, one for loops (e.g., the BLOSUM series) and one for TM-segments (the BATMAS series), and the choice of the TM-matrix should be different for eukaryotic and bacterial proteins.  相似文献   

6.
Leader peptidase, an integral transmembrane protein of Escherichia coli, requires two apolar topogenic elements for its membrane assembly: a 'hydrophobic helper' and an internal signal. The highly basic cytoplasmic region between these domains is a translocation poison sequence, which we have shown blocks the function of a preceding signal sequence. We have used oligonucleotide-directed mutagenesis to remove positively charged residues within this polar domain to determine if it is the basic character in this region that has the negative effect on translocation. Our results show that mutations that remove two or more of the positively charged residues within the polar region no longer block membrane assembly of leader peptidase. In addition, when the translocation poison domain (residues 30-52) is replaced with six lysine residues, the preceding apolar domain cannot function as an export signal, whereas it can with six glutamic acids. Thus, positively charged residues within membrane proteins may have a major role in determining the function of hydrophobic domains in membrane assembly.  相似文献   

7.
Campbell KM  Lumb KJ 《Biochemistry》2002,41(22):7169-7175
The coiled coil is an attractive target for protein design. The helices of coiled coils are characterized by a heptad repeat of residues denoted a to g. Residues at positions a and d form the interhelical interface and are usually hydrophobic. An established strategy to confer structural uniqueness to two-stranded coiled coils is the use of buried polar Asn residues at position a, which imparts dimerization and conformational specificity at the expense of stability. Here we show that polar interactions involving buried position-a Lys residues that can interact favorably only with surface e' or g' Glu residues also impart structural uniqueness to a designed heterodimeric coiled coil with the nativelike properties of sigmoidal thermal and urea-induced unfolding transitions, slow hydrogen exchange and lack of ANS binding. The position-a Lys residues do not, however, confer a single preference for helix orientation, likely reflecting the ability of Lys at position a to from favorable interactions with g' or e' Glu residues in the parallel and antiparallel orientations, respectively. The Lys-Glu polar interaction is less destabilizing than the Asn-Asn a-->a' interaction, presumably reflecting a higher desolvation penalty associated with the completely buried polar position-a groups. Our results extend the range of approaches for two-stranded coiled-coil design and illustrate the role of complementing polar groups associated with buried and surface positions of proteins in protein folding and design.  相似文献   

8.
The S'1 binding pocket of carboxypeptidase Y is hydrophobic, spacious, and open to solvent, and the enzyme exhibits a preference for hydrophobic P'1 amino acid residues. Leu272 and Ser297, situated at the rim of the pocket, and Leu267, slightly further away, have been substituted by site-directed mutagenesis. The mutant enzymes have been characterized kinetically with respect to their P'1 substrate preferences using the substrate series FA-Ala-Xaa-OH (Xaa = Leu, Glu, Lys, or Arg) and FA-Phe-Xaa-OH (Xaa = Ala, Val, or Leu). The results reveal that hydrophobic P'1 residues bind in the vicinity of residue 272 while positively charged P'1 residues interact with Ser297. Introduction of Asp or Glu at position 267 greatly reduced the activity toward hydrophobic P'1 residues (Leu) and increased the activity two- to three-fold for the hydrolysis of substrates with Lys or Arg in P'1. Negatively charged substituents at position 272 reduced the activity toward hydrophobic P'1 residues even more, but without increasing the activity toward positively charged P'1 residues. The mutant enzyme L267D + L272D was found to have a preference for substrates with C-terminal basic amino acid residues. The opposite situation, where the positively charged Lys or Arg were introduced at one of the positions 267, 272, or 297, did not increase the rather low activity toward substrates with Glu in the P'1 position but greatly reduced the activity toward substrates with C-terminal Lys or Arg due to electrostatic repulsion. The characterized mutant enzymes exhibit various specificities, which may be useful in C-terminal amino acid sequence determinations.  相似文献   

9.
We describe a new strategy for utilizing multiple sequence alignment information to detect distant relationships in searches of sequence databases. A single sequence representing a protein family is enriched by replacing conserved regions with position-specific scoring matrices (PSSMs) or consensus residues derived from multiple alignments of family members. In comprehensive tests of these and other family representations, PSSM-embedded queries produced the best results overall when used with a special version of the Smith-Waterman searching algorithm. Moreover, embedding consensus residues instead of PSSMs improved performance with readily available single sequence query searching programs, such as BLAST and FASTA. Embedding PSSMs or consensus residues into a representative sequence improves searching performance by extracting multiple alignment information from motif regions while retaining single sequence information where alignment is uncertain.  相似文献   

10.

Background  

In water-soluble proteins it is energetically favorable to bury hydrophobic residues and to expose polar and charged residues. In contrast to water soluble proteins, transmembrane proteins face three distinct environments; a hydrophobic lipid environment inside the membrane, a hydrophilic water environment outside the membrane and an interface region rich in phospholipid head-groups. Therefore, it is energetically favorable for transmembrane proteins to expose different types of residues in the different regions.  相似文献   

11.
In this study, I explain the observation that a rather limited number of residues (about 10) establishes the immunoglobulin fold for the sequences of about 100 residues. Immunoglobulin fold proteins (IgF) comprise SCOP protein superfamilies with rather different functions and with less than 10% sequence identity; their alignment can be accomplished only taking into account the 3D structure. Therefore, I believe that discovering the additional common features of the sequences is necessary to explain the existence of a common fold for these SCOP superfamilies. We propose a method for analysis of pair-wise interconnections between residues of the multiple sequence alignment which helps us to reveal the set of mutually correlated positions, inherent to almost every superfamily of this protein fold. Hence, the set of constant positions (comprising the hydrophobic common core) and the set of variable but mutually correlated ones can serve as a basis of having the common 3D structure for rather distinct protein sequences.  相似文献   

12.
Correlated mutation analysis (CMA) is an effective approach for predicting functional and structural residue interactions from multiple sequence alignments (MSAs) of proteins. As nearby residues may also play a role in a given functional interaction, we were interested in seeing whether covarying sites were clustered, and whether this could be used to enhance the predictive power of CMA. A large‐scale search for coevolving regions within protein domains revealed that if two sites in a MSA covary, then neighboring sites in the alignment also typically covary, resulting in clusters of covarying residues. The program PatchD( http://www.uhnres.utoronto.ca/labs/tillier/ ) was developed to measure the covariation between disconnected sequence clusters to reveal patch covariation. Patches that exhibit strong covariation identify multiple residues that are generally nearby in the protein structure, suggesting that the detection of covarying patches can be used in conjunction with traditional CMA approaches to reveal functional interaction partners. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Jung HJ  Lee JY  Kim SH  Eu YJ  Shin SY  Milescu M  Swartz KJ  Kim JI 《Biochemistry》2005,44(16):6015-6023
VSTx1 is a voltage sensor toxin from the spider Grammostola spatulata that inhibits KvAP, an archeabacterial voltage-activated K(+) channel whose X-ray structure has been reported. Although the receptor for VSTx1 and the mechanism of inhibition are unknown, the sequence of the toxin is related to hanatoxin (HaTx) and SGTx, two toxins that inhibit eukaryotic voltage-activated K(+) channels by binding to voltage sensors. VSTx1 has been recently shown to interact equally well with lipid membranes that contain zwitterionic or acidic phospholipids, and it has been proposed that the toxin receptor is located within a region of the channel that is submerged in the membrane. As a first step toward understanding the inhibitory mechanism of VSTx1, we determined the three-dimensional solution structure of the toxin using NMR. Although the structure of VSTx1 is similar to HaTx and SGTx in terms of molecular fold and amphipathic character, the detailed positions of hydrophobic and surrounding charged residues in VSTx1 are very different than what is seen in the other toxins. The amphipathic character of VSTx1, notably the close apposition of basic and hydrophobic residues on one face of the toxin, raises the possibility that the toxin interacts with interfacial regions of the membrane. We reinvestigated the partitioning of VSTx1 into lipid membranes and find that VSTx1 partitioning requires negatively charged phospholipids. Intrinsic tryptophan fluorescence and acrylamide quenching experiments suggest that tryptophan residues on the hydrophobic surface of VSTx1 have a diminished exposure to water when the toxin interacts with membranes. The present results suggest that if membrane partitioning is involved in the mechanism by which VSTx1 inhibits voltage-activated K(+) channels, then binding of the toxin to the channel would likely occur at the interface between the polar headgroups and the hydrophobic phase of the membrane.  相似文献   

14.
The transmembrane domain of the pro-apoptotic protein BNIP3 self-associates strongly in membranes and in detergents. We have used site-directed mutagenesis to analyze the sequence dependence of BNIP3 transmembrane domain dimerization, from which we infer the physical basis for strong and specific helix-helix interactions in this system. Hydrophobic substitutions identify six residues as critical to dimerization, and the pattern of sensitive residues suggests that the BNIP3 helices interact at a right-handed crossing angle. Based on the dimerization propensities of single point mutants, we propose that: polar residues His173 and Ser172 make inter-monomer hydrogen bonds to one another through their side-chains; Ala176, Gly180, and Gly184 form a tandem GxxxG motif that allows close approach of the helices; and Ile183 makes inter-monomer van der Waals contacts. Since neither the tandem GxxxG motif nor the hydrogen bonding pair is sufficient to drive dimerization, our results demonstrate the importance of sequence context for either hydrogen bonding or GxxxG motif involvement in BNIP3 transmembrane helix-helix interactions. In this study, hydrophobic substitutions away from the six interfacial positions have almost no effect on dimerization, confirming the expectation that hydrophobic replacements affect helix-helix interactions only if they interfere with packing or hydrogen bonding by interfacial residues. However, changes to slightly polar residues are somewhat disruptive even when located away from the interface, and the degree of disruption correlates with the decrease in hydrophobicity. Changing the hydrophobicity of the BNIP3 transmembrane domain alters its helicity and protection of its backbone amides. We suggest that polar substitutions decrease the fraction of dimer by stabilizing an unfolded monomeric state of the transmembrane span, rather than by affecting helix-helix interactions. This result has broad implications for interpreting the sequence dependence of membrane protein stability in detergents.  相似文献   

15.
Hu Z  Ma B  Wolfson H  Nussinov R 《Proteins》2000,39(4):331-342
A number of studies have addressed the question of which are the critical residues at protein-binding sites. These studies examined either a single or a few protein-protein interfaces. The most extensive study to date has been an analysis of alanine-scanning mutagenesis. However, although the total number of mutations was large, the number of protein interfaces was small, with some of the interfaces closely related. Here we show that although overall binding sites are hydrophobic, they are studded with specific, conserved polar residues at specific locations, possibly serving as energy "hot spots." Our results confirm and generalize the alanine-scanning data analysis, despite its limited size. Previously Trp, Arg, and Tyr were shown to constitute energetic hot spots. These were rationalized by their polar interactions and by their surrounding rings of hydrophobic residues. However, there was no compelling reason as to why specifically these residues were conserved. Here we show that other polar residues are similarly conserved. These conserved residues have been detected consistently in all interface families that we have examined. Our results are based on an extensive examination of residues which are in contact across protein interfaces. We utilize all clustered interface families with at least five members and with sequence similarity between the members in the range of 20-90%. There are 11 such clustered interface families, comprising a total of 97 crystal structures. Our three-dimensional superpositioning analysis of the occurrences of matched residues in each of the families identifies conserved residues at spatially similar environments. Additionally, in enzyme inhibitors, we observe that residues are more conserved at the interfaces than at other locations. On the other hand, antibody-protein interfaces have similar surface conservation as compared to their corresponding linear sequence alignment, consistent with the suggestion that evolution has optimized protein interfaces for function.  相似文献   

16.
In the family of acyl-coenzyme A binding proteins, a subset of 26 sequence sites are identical in all eukaryotes and conserved throughout evolution of the eukaryotic kingdoms. In the context of the bovine protein, the importance of these 26 sequence positions for structure, function, stability, and folding has been analyzed using single-site mutations. A total of 28 mutant proteins were analyzed which covered 17 conserved sequence positions and three nonconserved positions. As a first step, the influence of the mutations on the protein folding reaction has been probed, revealing a folding nucleus of eight hydrophobic residues formed between the N- and C-terminal helices [Kragelund, B. B., et al. (1999) Nat. Struct. Biol. (In press)]. To fully analyze the role of the conserved residues, the function and the stability have been measured for the same set of mutant proteins. Effects on function were measured by the extent of binding of the ligand dodecanoyl-CoA using isothermal titration calorimetry, and effects on protein stability were measured with chemical denaturation followed by intrinsic tryptophan and tyrosine fluorescence. The sequence sites that have been conserved for direct functional purposes have been identified. These are Phe5, Tyr28, Tyr31, Lys32, Lys54, and Tyr73. Binding site residues are mainly polar or charged residues, and together, four of these contribute approximately 8 kcal mol-1 of the total free energy of binding of 11 kcal mol-1. The sequence sites conserved for stability of the structure have likewise been identified and are Phe5, Ala9, Val12, Leu15, Leu25, Tyr28, Lys32, Gln33, Tyr73, Val77, and Leu80. Essentially, all of the conserved residues that maintain the stability are hydrophobic residues at the interface of the helices. Only one conserved polar residue, Gln33, is involved in stability. The results indicate that conservation of residues in homologous proteins may result from a summed optimization of an effective folding reaction, a stable native protein, and a fully active binding site. This is important in protein design strategies, where optimization of one of these parameters, typically function or stability, may influence any of the others markedly.  相似文献   

17.
The programs described herein function as part of a suite ofprograms designed for pairwise alignment, multiple alignment,generation of randomized sequences, production of alignmentscores and a sorting routine for analysis of the alignmentsproduced. The sequence alignment programs penalize gaps (absencesof residues) within regions of protein secondary structure andhave the added option of ‘fingerprinting’ structurallyor functionally important protein residues. The multiple alignmentprogram is based upon the sequence alignment method of Needlemanand Wunsch and the multiple alignment extension of Barton andSternberg. Our application includes the feature of optionallyweighting active site, monomer-monomer, ligand contact or otherimportant template residues to bias the alignment toward matchingthese residues. A sum-score for the alignments is introduced,which is independent of gap penalties. This score more adequatelyreflects the character of the alignments for a given scoringmatrix than the gap-penalty-dependent total score describedpreviously in the literature. In addition, individual aminoacid similarity scores at each residue position in the alignmentsare printed with the alignment output to enable immediate quantitativeassessment of homology at key sections of the aligned chains.  相似文献   

18.
19.
The amino acid sequence of subunit VIII from yeast cytochrome c oxidase is reported. This 47-residue (Mr = 5364) amphiphilic polypeptide has a polar NH2 terminus, a hydrophobic central section, and a dilysine COOH terminus. An analysis of local hydrophobicity and predicted secondary structure along the peptide chain predicts that the hydrophobic central region is likely to be transmembranous. Subunit VIII from yeast cytochrome c oxidase exhibits 40.4% homology to bovine heart cytochrome c oxidase subunit VIIc , at the level of primary structure. Secondary structures and hydrophobic domains predicted from the sequences of both polypeptides are also highly conserved. From the location of hydrophobic domains and the positions of charged amino acid residues we have formulated a topological model for subunit VIII in the inner mitochondrial membrane.  相似文献   

20.

Background

The 3C-like protease (3CLpro) of severe acute respiratory syndrome-coronavirus is required for autoprocessing of the polyprotein, and is a potential target for treating coronaviral infection.

Methodology/Principal Findings

To obtain a thorough understanding of substrate specificity of the protease, a substrate library of 198 variants was created by performing saturation mutagenesis on the autocleavage sequence at P5 to P3'' positions. The substrate sequences were inserted between cyan and yellow fluorescent proteins so that the cleavage rates were monitored by in vitro fluorescence resonance energy transfer. The relative cleavage rate for different substrate sequences was correlated with various structural properties. P5 and P3 positions prefer residues with high β-sheet propensity; P4 prefers small hydrophobic residues; P2 prefers hydrophobic residues without β-branch. Gln is the best residue at P1 position, but observable cleavage can be detected with His and Met substitutions. P1'' position prefers small residues, while P2'' and P3'' positions have no strong preference on residue substitutions. Noteworthy, solvent exposed sites such as P5, P3 and P3'' positions favour positively charged residues over negatively charged one, suggesting that electrostatic interactions may play a role in catalysis. A super-active substrate, which combined the preferred residues at P5 to P1 positions, was found to have 2.8 fold higher activity than the wild-type sequence.

Conclusions/Significance

Our results demonstrated a strong structure-activity relationship between the 3CLpro and its substrate. The substrate specificity profiled in this study may provide insights into a rational design of peptidomimetic inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号