首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microduplications of 22q11.2 have been recently characterized as a new genomic duplication syndrome showing an extremely variable phenotype ranging from normal or mild learning disability to multiple congenital defects and sharing some overlapping features with DiGeorge/Velocardiofacial syndrome (DGS/VCFS). We report on the prenatal diagnosis of a 22q11.2 microduplication in a fetus with normal development that was referred for chromosomal analysis at 17 weeks of gestation because of advanced maternal age. Pregnancy was the result of an IVF-ICSI attempt after 4 years of infertility, mainly due to severe oligoasthenoteratospermia of the father. Amniocentesis was undertaken and cytogenetic analysis revealed an apparently normal male karyotype. Multiple Ligation-dependent Probe Amplification (MLPA) revealed a microduplication in the 22q11.2 chromosome region. Parental analysis showed that the 22q11.2 microduplication has been inherited from the otherwise healthy mother. Analysis with high resolution array-CGH showed that the size of the microduplication is 2.5 Mb and revealed the genes that are duplicated, including the TBX1 gene. The parents elected to continue with the pregnancy and the infant is now five months old and shows normal development.  相似文献   

2.

Backround

Down syndrome (DS) is the most common aneuploidy in live-born individuals and it is well recognized with various phenotypic expressions. Although an extra chromosome 21 is the genetic cause for DS, specific phenotypic features may result from the duplication of smaller regions of the chromosome and more studies need to define genotypic and phenotypic correlations.

Case report

We report on a 26 year old male with partial trisomy 21 presenting mild clinical symptoms relative to DS including borderline intellectual disability. In particular, the face and the presence of hypotonia and keratoconus were suggestive for the DS although the condition remained unnoticed until his adult age array comparative genomic hybridization (aCGH) revealed a 10.1 Mb duplication in 21q22.13q22.3 and a small deletion of 2.2 Mb on chromosomal band 7q36 arising from a paternal translocation t(7;21). The 21q duplication encompasses the gene DYRK1.

Conclusion

Our data support the evidence of specific regions on distal 21q whose duplication results in phenotypes recalling the typical DS face. Although the duplication region contains DYRK1, which has previously been implicated in the causation of DS, our patient has a borderline IQ confirming that their duplication is not sufficient to cause the full DS phenotype.  相似文献   

3.
We describe a female patient of 1 year and 5 months-old, referred for genetic evaluation due to neuropsychomotor delay, hearing impairment and dysmorphic features. The patient presents a partial chromosome 21 monosomy (q11.2→q21.3) in combination with a chromosome 3p terminal monosomy (p25.3→pter) due to an unbalanced de novo translocation. The translocation was confirmed by fluorescence in situ hybridization (FISH) and the breakpoints were mapped with high resolution array. After the combined analyses with these techniques the final karyotype was defined as 45,XX,der(3)t(3;21)(p25.3;q21.3)dn,-21.ish der(3)t(3;21)(RP11-329A2-,RP11-439F4-,RP11-95E11-,CTB-63H24 +).arr 3p26.3p25.3(35,333-10,888,738)) × 1,21q11.2q21.3(13,354,643-27,357,765) × 1. Analysis of microsatellite DNA markers pointed to a paternal origin for the chromosome rearrangement. This is the first case described with a partial proximal monosomy 21 combined with a 3p terminal monosomy due to a de novo unbalanced translocation.  相似文献   

4.

Background

The chromosome 22q11.2 region microduplication has been described in patients with variable phenotypes. Here we present a 3-month-old girl with both 22q11.2 microduplication and 19p13.12–13.13 deletion. The presence of both genomic imbalances in one patient has not been previously reported in literature.

Methods

A routine G-banding karyotype analysis was performed using peripheral lymphocytes. Chromosome microarray analysis (CMA) was done using Affymetrix CytoScan™ HD array.

Results

The result of karyotyping showed that the patient is 46,XX,t(12;19)(q24.3;p13.1), but CMA detected a 2.8 Mb microduplication within the region 22q11.2 (chr22: 18,648,866–21,465,659) and a 1.2 Mb deletion on the chromosome 19at band p13.12–p13.13 (chr19: 13,107,938–14,337,347) in her genome, while no abnormalities were identified on 12q24.3. The 3-month-old girl presented with microcephaly, cleft palate, low set and retroverted ears, and facial dysmorphism which consisted of the following: a long narrow face, widely spaced eyes, downslanting palpebral fissures, broad nasal base, short philtrum, thin upper lip, and micro/retrognathia. She also had a congenital right pulmonary artery sling and tracheal stenosis and suffered from significant hypotonia and partial bilateral mixed hearing loss.

Conclusions

We report a case of 22q11.2 duplication syndrome with 19p13.12–13.13 deletion. Synergistic effect from the two genomic imbalances is likely responsible for the complicated clinical features observed in this patient.  相似文献   

5.
We describe a boy with a de novo deletion of 15.67 Mb spanning 3q22.1q24. He has bilateral micropthalmia, ptosis, cleft palate, global developmental delay and brain, skeletal and cardiac abnormalities. In addition, he has bilateral inguinal hernia and his right kidney is absent. We compare his phenotype with seven other patients with overlapping and molecularly defined interstitial 3q deletions. This patient has some phenotypic features that are not shared by the other patients. More cases with smaller deletions defined by high resolution aCGH will enable better genotype–phenotype correlations and prioritizing of candidate genes for the identification of pathways and disease mechanisms.  相似文献   

6.
Lee S  Chae H  Park IY  Kim M  Kim Y  Shin JC  Lee J  Son J 《Gene》2012,494(1):105-108
We describe here a newborn with a de novo 22.6 Mb interstitial deletion of chromosome 5q22.3. The clinical findings included brachycephaly, a high forehead, hypertelorism with prominent eyes, low-set ears, clenched hands, club feet, a prominent coccyx with hair, ambiguous genitalia, inguinal hernia, heart defect and severe failure to thrive. This case had a more severe phenotype, compared with the previous reports of interstitial 5q syndrome. High resolution multicolor banding and array comparative genomic hybridization (array CGH) analysis delineated the breakpoints at 5q22.3 and 5q31.2. There were no obvious candidate genes for the specific correlation with the phenotypes except a PITX1 gene associated with the phenotype of club feet. Further cumulative data based on the molecular approach are needed to establish the genotype-phenotype correlation and to understand the role and influence of the genes in the interstitial 5q syndrome.  相似文献   

7.
Duplications of the X chromosome are rare cytogenetic findings, and have been associated with an abnormal phenotype in the male offspring of apparently normal or near normal female carriers. We report on the prenatal diagnosis of a duplication on the long arm of chromosome X from chromosomal band Xq13.2 to q21.31 in a male fetus with increased nuchal translucency in the first trimester and polyhydramnios at 22 weeks of gestation. Amniocentesis was undertaken and cytogenetic analysis revealed additional chromosomal material in the long arm of chromosome X at position Xq13. Analysis with high resolution array CGH revealed the additional material is in fact a duplication of the region Xq13.2–q21.13. The duplication is 14.8 Mb in size and includes fourteen genes: SLC16A2, KIAA2022, ABCB7, ZDHHC15, ATRX, MAGT1, ATP7A, PGK1, TBX22, BRWD3, POU3F4, ZNF711, POF1B and CHM. Analysis of the parents revealed the mother to be a carrier of the same duplication. After elected termination of the pregnancy at 28 weeks a detailed autopsy of the fetus allowed for genotype–phenotype correlations.  相似文献   

8.
Unstable, gene-rich pericentric regions have been associated with various structural aberrations including small supernumerary marker chromosomes (sSMCs). We hereby report on a new sSMC derived from chromosome 14, generating trisomy 14pter → q12 in a child with severe neurodevelopmental delay. The patient featured facial dysmorphism, generalized hypotonia, transverse palmar creases, structural brain abnormality, and severe cognitive and motor impairment. Literature review indicated this to be a unique case of sSMC 14 which was only composed of pter → q12, and the phenotype secondary to duplications of the similar region partially overlaps with the phenotype reported in this study. The genetic analysis on our case helps to better delineate karyotype–phenotype correlations between proximal trisomy 14 and associated clinical phenomena, and we also propose that the involved chromosomal regions may contain dosage-sensitive genes which are important for the development.  相似文献   

9.
Until now, few cases of partial trisomy of 3q due to segregation error of parental balanced translocation and segregation of a duplicated deficient product resulting from parental pericentric inversion have been reported so far. Only five cases of chromosomal insertion malsegregation involving 3q region are available yet, thus making it relatively rare. In this case report, we are presenting a unique case of discontinuous partial trisomy of 3q26.1-q28 region which resulted from a segregation error of two insertions involving 3q26.1 to 3q27.3 and 3q28 regions with ~ 21 Mb and ~ 2 Mb sizes, respectively. The maternally inherited insertion was cytogenetically characterized as der(8)(8pter → 8p22::3q26 → 3q27.3::3q28 → 3q28::8p22 → 8qter) and the patient's major clinical features involved Dandy Walker malformation, sub-aortic ventricular septal defect, upslanting palpebral fissures, clinodactyly, hirsutism, and prominent forehead. Besides, a review of the literature involving cases with similar chromosomal imbalances and cases with “3q-duplication syndrome” is also provided.  相似文献   

10.
Pericentric inversions of chromosome 9 leading to unbalanced live-born offspring are relatively rare and so far only four cases have been reported. Here we present two sisters with an unbalanced recombinant chromosome 9 which resulted from a large maternal pericentric inversion inv(9)(p24.3q34.1). Further molecular characterisation of the aberrant chromosome 9 by 250k SNP array analysis showed a terminal 460 kb loss of 9p24.3 and a terminal 8.9 Mb gain of 9q34.11. We compared the clinical features of these two patients with the previous reported four cases as well as with patients with similar sized 9pter deletions or 9qter duplications. Based upon this study, we suggest that the recombinant chromosome 9 phenotype is mainly the result of duplication of a 3.4 Mb region of chromosome 9q34.11q34.13.  相似文献   

11.
Chromosome 22, particularly band 22q11.2, is predisposed to rearrangements due to misalignments of low-copy repeats (LCRs). DiGeorge/velocardiofacial syndrome (DG/VCFS) is a common disorder resulting from microdeletion within the same band. Although both deletion and duplication are expected to occur in equal proportions as reciprocal events caused by LCR-mediated rearrangements, very few microduplications have been identified. We have identified 13 cases of microduplication 22q11.2, primarily by interphase fluorescence in situ hybridization (FISH). The size of the duplications, determined by FISH probes from bacterial artificial chromosomes and P(1) artificial chromosomes, range from 3-4 Mb to 6 Mb, and the exchange points seem to involve an LCR. Molecular analysis based on 15 short tandem repeats confirmed the size of the duplications and indicated that at least 1 of 15 loci has three alleles present. The patients' phenotypes ranged from mild to severe, sharing a tendency for velopharyngeal insufficiency with DG/VCFS but having other distinctive characteristics, as well. Although the present series of patients was ascertained because of some overlapping features with DG/VCF syndromes, the microduplication of 22q11.2 appears to be a new syndrome.  相似文献   

12.
Trisomy of the short arm of chromosome 17 (T17P) is a genomic disorder presenting with growth retardation, motor and mental retardation and constitutional physical anomalies including congenital heart defects. Here we report a case of near-complete T17P of which the genomic dosage aberrations were delineated by chromosomal microarray along with conventional diagnostic modalities. A 9-year-old Korean boy was admitted because of esophageal obstruction. He showed clinical manifestations of T17P, along with atypical features of scoliosis, corpus callosum agenesis, and seizure. Chromosome analyses revealed an inverted duplication of the chromosomal segment between 17p11.2 and 17p13.3. Chromosomal microarray revealed a duplication of the most of the short arm of chromosome 17 (size ~ 19.09 Mb) along with a cryptic deletion of a small segment of 17p terminal end (17pter) (~ 261 Kb). This is the first report of molecular characterization of near-complete T17P from inverted duplication in association with 17pter microdeletion. The fine delineation of the extent of genomic aberration by SNP-based microarray could help us better understand the molecular mechanism and genotype–phenotype correlations in T17P syndrome.  相似文献   

13.
Angelman syndrome is a neurodevelopmental disorder characterized by mental retardation, severe speech disorder, facial dysmorphism, secondary microcephaly, ataxia, seizures, and abnormal behaviors such as easily provoked laughter. It is most frequently caused by a de novo maternal deletion of chromosome 15q11–q13 (about 70–90%), but can also be caused by paternal uniparental disomy of chromosome 15q11–q13 (3–7%), an imprinting defect (2–4%) or in mutations in the ubiquitin protein ligase E3A gene UBE3A mostly leading to frame shift mutation. In addition, for patients with overlapping clinical features (Angelman-like syndrome), mutations in methyl-CpG binding protein 2 gene MECP2 and cyclin-dependent kinase-like 5 gene CDKL5 as well as a microdeletion of 2q23.1 including the methyl-CpG binding domain protein 5 gene MBD5 have been described. Here, we describe a patient who carries a de novo 5 Mb-deletion of chromosome 15q11.2–q13.1 known to be associated with Angelman syndrome and a further, maternally inherited deletion 2q21.3 (~ 364 kb) of unknown significance. In addition to classic features of Angelman syndrome, she presented with severe infections in the first year of life, a symptom that has not been described in patients with Angelman syndrome. The 15q11.2–q13.1 deletion contains genes critical for Prader–Willi syndrome, the Angelman syndrome causing genes UBE3A and ATP10A/C, and several non-imprinted genes: GABRB3 and GABRA5 (both encoding subunits of GABA A receptor), GOLGA6L2, HERC2 and OCA2 (associated with oculocutaneous albinism II). The deletion 2q21.3 includes exons of the genes RAB3GAP1 (associated with Warburg Micro syndrome) and ZRANB3 (not disease-associated). Despite the normal phenotype of the mother, the relevance of the 2q21.3 microdeletion for the phenotype of the patient cannot be excluded, and further case reports will need to address this point.  相似文献   

14.
CHARGE syndrome is an autosomal dominant inherited disorder characterized by a specific and recognizable pattern of anomalies. De novo mutations or deletions of the gene encoding chromodomain helicase DNA binding protein 7 (CHD7) are the major cause of CHARGE syndrome. In this report, we describe a patient with a typical phenotype characterized by psychomotor retardation, hypertrichosis, facial asymmetry, synophria, failure to thrive, developmental delay and gastro-esophageal reflux, carrying a de novo 6.04 Mb interstitial deletion in 8q12.1q12.3 detected by single nucleotide polymorphism (SNP) array analysis. Despite the deletion includes CHD7 and although the patient shares some of the clinical features of the CHARGE syndrome, she does not fulfill the clinical criteria for this syndrome. To the best of our knowledge, this is the second case with an entire deletion of the CHD7 gene not leading to CHARGE syndrome and, for this reason, useful to expand and further delineate the clinical features associated with the 8q12.1q12.3 deletion. Furthermore, the literature review revealed that the phenotype secondary to duplications of the same region partially overlaps with the phenotype reported in this study. Selected genes that are present in the hemizygous state and which might be important for the phenotype of this patient, are discussed in context of the clinical features.  相似文献   

15.
Immunosuppression resulting from HIV infection increases the risk of progression to active tuberculosis (TB) both in individuals newly exposed to Mycobacterium tuberculosis (MTB) and in those with latent infections. We hypothesized that HIV-positive individuals who do not develop TB, despite living in areas where it is hyperendemic, provide a model of natural resistance. We performed a genome-wide association study of TB resistance by using 581 HIV-positive Ugandans and Tanzanians enrolled in prospective cohort studies of TB; 267 of these individuals developed active TB, and 314 did not. A common variant, rs4921437 at 5q33.3, was significantly associated with TB (odds ratio = 0.37, p = 2.11 × 10−8). This variant lies within a genomic region that includes IL12B and is embedded in an H3K27Ac histone mark. The locus also displays consistent patterns of linkage disequilibrium across African populations and has signals of strong selection in populations from equatorial Africa. Along with prior studies demonstrating that therapy with IL-12 (the cytokine encoded in part by IL12B, associated with longer survival following MTB infection in mice deficient in CD4 T cells), our results suggest that this pathway might be an excellent target for the development of new modalities for treating TB, especially for HIV-positive individuals. Our results also indicate that studying extreme disease resistance in the face of extensive exposure can increase the power to detect associations in complex infectious disease.  相似文献   

16.
The recognition of the 17q21.31 microdeletion and microduplication syndrome has been facilitated by high resolution oligonucleotide array comparative genome hybridization technology (aCGH). Molecular analysis of the 17q21.31 microdeletion/duplication syndrome demonstrated a critical region involving at least six genes, including STH and MAPT. The 17q21.31 microdeletion syndrome has an incidence of 1 in 16,000 births, while the microduplication 17q21.31 has been reported so far in only five patients. In general, phenotypes associated with 17q21.31 microduplication seem to be milder than those associated with the microdeletion. Here, we present four patients who have been referred for genetic evaluation by clinical geneticists due to developmental delay and minor congenital abnormalities. Previous standard karyotypes were negative, while aCGH analysis revealed three patients with 17q21.31 microdeletion and one with the respective microduplication, being the sixth reported case so far. Most importantly one of the microdeletion cases involves only partial MAPT gene deletion while leaving the STH gene intact. Two of our patients, one with the 17q21.31 microdeletion and another with the respective microduplication, carried additional clinically relevant microdeletions (del Xq21.31 and del 15q11.2, respectively), possibly modifying their phenotype.  相似文献   

17.
18.
Partial duplication of 11q is related to several malformations like growth retardation, intellectual disability, hypoplasia of corpus callosum, short nose, palate defects, cardiac, urinary tract abnormalities and neural tube defects. We have studied the clinical and molecular characteristics of a patient with severe intellectual disabilities, dysmorphic features, congenital inguinal hernia and congenital cerebral malformation which is referred to as cytogenetic exploration. We have used FISH and array CGH analysis for a better understanding of the double chromosomic aberration involving a 7p microdeletion along with a partial duplication of 11q due to adjacent segregation of a paternal reciprocal translocation t(7;11)(p22;q21) revealed after banding analysis. The patient's karyotype formula was: 46,XY,der(7)t(7;11)(p22;q21)pat. FISH study confirmed these rearrangement and array CGH technique showed precisely the loss of at least 140 Kb on chromosome7p22.3pter and 33.4 Mb on chromosome11q22.1q25. Dysmorphic features, severe intellectual disability and brain malformations could result from the 11q22.1q25 trisomy. Our study provides an additional case for better understanding and delineating the partial duplication 11q.  相似文献   

19.

Background

Microduplication at 17p13.3 and microdeletion at 21q22 are both rare chromosomal aberrations. The presence of both genomic imbalances in one patient has not been previously reported in literature. In this study, we performed a molecular diagnostic testing with a whole genome microarray on a 3-year-old boy with developmental delay, mental retardation and multiple malformations.

Methods

A routine G-banding karyotype analysis was performed using peripheral lymphocytes. Chromosome microarray analysis (CMA) was done using Affymetrix CytoScan™ HD array. Genomic imbalances were further confirmed by multiple ligation-dependent probe amplification (MLPA).

Results

The result of karyotyping was normal but CMA detected a 9.8 Mb microduplication at 17p13.3–13.1 (chr17: 1–9,875,545) and a 2.8 Mb microdeletion involving 21q22.3–qter (chr21: 45,239,077–48,097,372). The imbalances were due to a balanced translocation present in patient's mother. The patient was characterized with short stature, profound developmental delay, non-verbal, intellectual disability as well as craniofacial dysmorphism, subtle brain structural anomaly and sparse scalp hair.

Conclusions

This is the first patient reported with a combination of a microduplication at 17p13.3–13.1 and a microdeletion at 21q22.3–qter. Both genomic imbalances were undetected by conventional karyotyping but were delineated with CMA test. Synergistic effect from the two rare genomic imbalances is likely responsible for the severe clinical phenotypes observed in this patient.  相似文献   

20.
Chromosome 22q11.2 deletion syndrome, one of the most common human genomic syndromes, has highly heterogeneous clinical presentation. Patients usually harbor a 1.5 to 3 Mb hemizygous deletion at chromosome 22q11.2, resulting in pathognomic TBX1, CRKL and/or MAPK1 haploinsufficiency. However, there are some individuals with clinical features resembling the syndrome who are eventually diagnosed with genomic disorders affecting other chromosomal regions. The objective of this study was to evaluate the additive value of high-resolution array-CGH testing in the cohort of 41 patients with clinical features of 22q11.2 deletion syndrome and negative results of standard cytogenetic diagnostic testing (karyotype and FISH for 22q11.2 locus). Array-CGH analysis revealed no aberrations at chromosomes 22 or 10 allegedly related to the syndrome. Five (12.2 %) patients were found to have other genomic imbalances, namely 17q21.31 microdeletion syndrome (MIM#610443), 1p36 deletion syndrome (MIM#607872), NF1 microduplication syndrome (MIM#613675), chromosome 6pter-p24 deletion syndrome (MIM#612582) and a novel interstitial deletion at 3q26.31 of 0.65 Mb encompassing a dosage-dependent gene NAALADL2. Our study demonstrates that the implementation of array-CGH into the panel of classic diagnostic procedures adds significantly to their efficacy. It allows for detection of constitutional genomic imbalances in 12 % of subjects with negative result of karyotype and FISH targeted for 22q11.2 region. Moreover, if used as first-tier genetic test, the method would provide immediate diagnosis in ~40 % phenotypic 22q11.2 deletion subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号