首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During pregnancy and lactation, metabolic adaptations involve changes in expression of desaturases and elongases (Elovl2 and Elovl5) in the mammary gland and liver for the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid (AA) required for fetal and postnatal growth. Adipose tissue is a pool of LC-PUFAs. The response of adipose tissue for the synthesis of these fatty acids in a lipid-deficient diet of dams is unknown. The aim of this study was to explore the role of maternal tissue in the synthesis of LC-PUFAs in rats fed a low-lipid diet during pregnancy and lactation. Fatty acid composition (indicative of enzymatic activity) and gene expression of encoding enzymes for fatty acid synthesis were measured in liver, mammary gland and adipose tissue in rats fed a low-lipid diet. Gene expression of desaturases, elongases, fatty acid synthase (Fasn) and their regulator Srebf-1c was increased in the mammary gland, liver and adipose tissue of rats fed a low-lipid diet compared with rats from the adequate-lipid diet group throughout pregnancy and lactation. Genes with the highest (P < 0.05) expression in the mammary gland, liver and adipose tissue were Elovl5 (1333%), Fads2 (490%) and Fasn (6608%), respectively, in a low-lipid diet than in adequate-lipid diet. The percentage of AA in the mammary gland was similar between the low-lipid diet and adequate-lipid diet groups during the second stage of pregnancy and during lactation. The percentage of monounsaturated and saturated fatty acids was significantly (P < 0.05) increased throughout pregnancy and lactation in all tissues in rats fed a low-lipid diet than in rats fed an adequate-lipid diet. Results suggest that maternal metabolic adaptations used to compensate for lipid-deficient diet during pregnancy and lactation include increased expression of genes involved in LC-PUFAs synthesis in a stage- and tissue-specific manner and elevated lipogenic activity (saturated and monounsaturated fatty acid synthesis) of maternal tissues including adipose tissue.  相似文献   

2.
The effects of fish oil (FO) substitution by 66% vegetable oils in a diet with already 75% vegetable protein (66VO) on adipose tissue lipid metabolism of gilthead sea bream were analysed after a 14-month feeding trial. In the last 3 months of the experiment, a FO diet was administrated to a 66VO group (group 66VO/FO) as a finishing diet. Hormone-sensitive lipase (HSL) activity was measured in adipose tissue and adipocyte size, and HSL, lipoprotein lipase and liver X receptor gene expression in isolated adipocytes, on which lipolysis and glucose uptake experiments were also performed. Lipolysis was measured after incubation with tumour necrosis factor-α (TNFα), linoleic acid, and two conjugated linoleic acid isomers. Glucose uptake was analysed after TNFα or insulin administration. Our results show that FO replacement increased lipolytic activity and adipocyte cell size. The higher proportion of large cells observed in the 66VO group could be involved in their observed lower response to fatty acid treatments and lower insulin sensitivity. The 66VO/FO group showed a moderate return to the FO conditions. Therefore, FO replacement can affect the morphology and metabolism of gilthead sea bream adipocytes which could potentially affect other organs such as the liver.  相似文献   

3.
哺乳动物因为缺乏Δ-12和ω-3脂肪酸脱氢酶,不能自身合成必需的多不饱和脂肪酸.目前,通过转基因技术在哺乳动物体内表达ω-3脂肪酸脱氢酶,能将长链的n-6多不饱和脂肪酸转化成n-3多不饱和脂肪酸,造成体内长链的n-6多不饱和脂肪酸含量显著减低.本研究通过自我剪切2A肽介导Δ-12和ω-3脂肪酸脱氢酶(FAT-2和FAT-1)以及人过氧化氢酶(human catalase,hCAT)在小鼠的肌肉同时表达.结果表明,转基因小鼠肌肉中长链n-3多不饱和脂肪酸含量提高2.6倍,长链n-6多不饱和脂肪酸含量没有显著变化,而n-6/n-3比例显著降低(P < 0.01).同时蛋白质印迹检测到人过氧化氢酶hCAT在小鼠的肌肉组织中表达,且过氧化氢酶活性比野生型小鼠显著提高(P < 0.01).  相似文献   

4.
5.
球等鞭金藻(Isochrysis galbana)是一类单细胞海洋微藻,富含二十二碳六烯酸(DHA,22:6Δ4,7,10,13,16,19)。我们利用RACE的方法从球等鞭金藻cDNA文库中同源克隆到一个大小为1329 bp的cDNA片段,编码442个氨基酸的多肽,分子量约49.9 kD。生物信息学分析表明,其编码产物N端具有细胞色素b5结构域,以及与电子传递有关的三个富含组氨酸的结构域,与Pavlova salinaΔ5去饱和酶同源性最高,达56%,故将该基因命名为IgD5。酿酒酵母功能鉴定实验表明,其编码的蛋白质具有Δ5去饱和酶活性,能够将二高-γ-亚麻酸(DGLA,20:3Δ8,11,14)转化成花生四烯酸(AA,20:4Δ5,8,11,14),转化效率平均为34.6%,最高可达40.3%。  相似文献   

6.
The role of acyl‐CoA‐dependent Δ6‐desaturation in the heterologous synthesis of omega‐3 long‐chain polyunsaturated fatty acids was systematically evaluated in transgenic yeast and Arabidopsis thaliana. The acyl‐CoA Δ6‐desaturase from the picoalga Ostreococcus tauri and orthologous activities from mouse (Mus musculus) and salmon (Salmo salar) were shown to generate substantial levels of Δ6‐desaturated acyl‐CoAs, in contrast to the phospholipid‐dependent Δ6‐desaturases from higher plants that failed to modify this metabolic pool. Transgenic plants expressing the acyl‐CoA Δ6‐desaturases from either O. tauri or salmon, in conjunction with the two additional activities required for the synthesis of C20 polyunsaturated fatty acids, contained higher levels of eicosapentaenoic acid compared with plants expressing the borage phospholipid‐dependent Δ6‐desaturase. The use of acyl‐CoA‐dependent Δ6‐desaturases almost completely abolished the accumulation of unwanted biosynthetic intermediates such as γ‐linolenic acid in total seed lipids. Expression of acyl‐CoA Δ6‐desaturases resulted in increased distribution of long‐chain polyunsaturated fatty acids in the polar lipids of transgenic plants, reflecting the larger substrate pool available for acylation by enzymes of the Kennedy pathway. Expression of the O. tauriΔ6‐desaturase in transgenic Camelina sativa plants also resulted in the accumulation of high levels of Δ6‐desaturated fatty acids. This study provides evidence for the efficacy of using acyl‐CoA‐dependent Δ6‐desaturases in the efficient metabolic engineering of transgenic plants with high value traits such as the synthesis of omega‐3 LC‐PUFAs.  相似文献   

7.
8.
Fish are the most important dietary source of the n-3 highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), that have particularly important roles in human nutrition reflecting their roles in critical physiological processes. The objective of the study described here was to clone, functionally characterize and compare expressed fatty acid desaturase genes involved in the production of EPA and DHA in freshwater and marine teleost fish species. Putative fatty acid desaturase cDNAs were isolated and cloned from common carp (Cyprinus carpio) and turbot (Psetta maximus). The enzymic activities of the products of these cDNAs, together with those of cDNAs previously cloned from rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata), were determined by heterologous expression in the yeast Saccharomyces cerevisiae. The carp and turbot desaturase cDNAs included open reading frames (ORFs) of 1335 and 1338 base pairs, respectively, specifying proteins of 444 and 445 amino acids. The protein sequences possessed all the characteristic features of microsomal fatty acid desaturases, including three histidine boxes, two transmembrane regions, and N-terminal cytochrome b(5) domains containing the haem-binding motif, HPGG. Functional expression showed all four fish cDNAs encode basically unifunctional Delta6 fatty acid desaturase enzymes responsible for the first and rate-limiting step in the biosynthesis of HUFA from 18:3n-3 and 18:2n-6. All the fish desaturases were more active towards the n-3 substrate with 59.5%, 31.5%, 23.1% and 7.0% of 18:3n-3 being converted to 18:4n-3 in the case of turbot, trout, sea bream and carp, respectively. The enzymes also showed very low, probably physiologically insignificant, levels of Delta5 desaturase activity, but none of the products showed Delta4 desaturase activity. The cloning and characterization of desaturases from these fish is an important advance, as they are species in which there is a relative wealth of data on the nutritional regulation of fatty acid desaturation and HUFA synthesis, and between which substantive differences occur.  相似文献   

9.
10.
Acyl-coenzyme A:diacylglycerol transferase (DGAT), fatty acid synthetase (FAS), and LPL are three enzymes important in adipose tissue triglyceride accumulation. To study the relationship of DGAT1, FAS, and LPL with insulin, we examined adipose mRNA expression of these genes in subjects with a wide range of insulin sensitivity (SI). DGAT1 and FAS (but not LPL) expression were strongly correlated with SI. In addition, the expression of DGAT1 and FAS (but not LPL) were higher in normal glucose-tolerant subjects compared with subjects with impaired glucose tolerance (IGT) (P < 0.005). To study the effects of insulin sensitizers, subjects with IGT were treated with pioglitazone or metformin for 10 weeks, and lipogenic enzymes were measured in adipose tissue. After pioglitazone treatment, DGAT1 expression was increased by 33 +/- 10% (P < 0.05) and FAS expression increased by 63 +/- 8% (P < 0.05); however, LPL expression was not altered. DGAT1, FAS, and LPL mRNA expression were not significantly changed after metformin treatment. The treatment of mice with rosiglitazone also resulted in an increase in adipose expression of DGAT1 by 2- to 3-fold, as did the treatment of 3T3 F442A adipocytes in vitro with thiazolidinediones. These data support a more global concept suggesting that adipose lipid storage functions to prevent peripheral lipotoxicity.  相似文献   

11.
Objective: To test the hypothesis that adipose tissue could be one of the primary targets through which medium‐chain fatty acids (MCFAs) exert their metabolic influence. Research Methods and Procedures: Sprague‐Dawley rats were fed a control high‐fat diet compared with an isocaloric diet rich in medium‐chain triglycerides (MCTs). We determined the effects of MCTs on body fat mass, plasma leptin and lipid levels, acyl chain composition of adipose triglycerides and phospholipids, adipose tissue lipoprotein lipase activity, and the expression of key adipogenic genes. Tissue triglyceride content was measured in heart and gastrocnemius muscle, and whole body insulin sensitivity and glucose tolerance were also measured. The effects of MCFAs on lipoprotein lipase activity and adipogenic gene expression were also assessed in vitro using cultured adipose tissue explants or 3T3‐L1 adipocytes. Results: MCT‐fed animals had smaller fat pads, and they contained a considerable amount of MCFAs in both triglycerides and phospholipids. A number of key adipogenic genes were down‐regulated, including peroxisome proliferator activated receptor γ and CCAAT/enhancer binding protein α and their downstream metabolic target genes. We also found reduced adipose tissue lipoprotein lipase activity and improved insulin sensitivity and glucose tolerance in MCT‐fed animals. Analogous effects of MCFAs on adipogenic genes were found in cultured rat adipose tissue explants and 3T3‐L1 adipocytes. Discussion: These results suggest that direct inhibitory effects of MCFAs on adiposity may play an important role in the regulation of body fat development.  相似文献   

12.
In the liver, maintaining lipid homeostasis is regulated by physiological and exogenous factors. These lipids are synthesized by Fasn, elongases and desaturases. Interactions in an organism among these factors are quite complex and, to date, relatively little is known about them. The aim of this study was to evaluate the coexisting role of physiological (insulin, fasting and feeding) and exogenous (dietary lipids) factors in the control of gene expression of Fasn, elongases and desaturases via Srebf-1c in liver from rats. Gene expression of encoding enzymes for fatty acid synthesis and fatty acid composition was evaluated in liver from rats in fasting and feeding (at 30, 60, 90 and 120 min after feeding) when food intake (adequate or high-lipid diet) was synchronized to a restricted period of 7h. Fasn, Scd and Fads2 were induced during 120 min after initial feeding in both dietary groups. This induction may be activated in part by insulin via Srebf-1c. Also, we showed for the first time that Elovl7 may be regulated by insulin and dietary lipids. The failure to synthesize saturated and monounsaturated fatty acids is consistent with a downregulation of Fasn and Scd, respectively, by dietary lipids. A higher content of LC-PUFAs was observed due to a high expression of Elovl2 and Elovl5, although Fads2 was suppressed by dietary lipids. Therefore, elongases may have a mechanism that is Srebf-1c-independent. This study suggests that a high-lipid diet triggers, during 120 min after initial feeding, a tight coordination among de novo lipogenesis, elongation, and desaturation and may not always be regulated by Srebf-1c. Finally, upregulation by feeding (insulin) of Fasn, Scd, Fads2 and Srebf-1c is insufficient to compensate for the inhibitory effect of dietary lipids.  相似文献   

13.
This study investigated the effects of dietary linolenic acid (C18:3n-3) v. linoleic acid (C18:2n-6) on fatty acid composition and protein expression of key lipogenic enzymes, acetyl-CoA carboxylase (ACC), stearoyl-CoA desaturase (SCD) and delta 6 desaturase (Δ6d) in longissimus muscle and subcutaneous adipose tissue of bulls. Supplementation of the diet with C18:3n-3 was accompanied by an increased level of n-3 fatty acids in muscle which resulted in decrease of n-6/n-3 ratio. The diet enriched with n-3 polyunsaturated fatty acids (PUFAs) significantly inhibited SCD protein expression in muscle and subcutaneous adipose tissue, and reduced the Δ6d expression in muscle. There was no significant effect of the diet on ACC protein expression. Inhibition of the Δ6d expression was associated with a decrease in n-6 PUFA level in muscles, whereas repression of SCD protein was related to a lower oleic acid (C18:1 cis-9) content in the adipose tissue. Expression of ACC, SCD and Δ6d proteins was found to be relatively higher in subcutaneous adipose tissue when compared with longissimus muscle. It is suggested that dietary manipulation of fatty acid composition in ruminants is mediated, at least partially, through the regulation of lipogenic enzymes expression and that regulation of the bovine lipogenic enzymes expression is tissue specific.  相似文献   

14.
Currently existing data show that the capability for long-chain PUFA (LC-PUFA) biosynthesis in teleost fish is more diverse than in other vertebrates. Such diversity has been primarily linked to the subfunctionalization that teleostei fatty acyl desaturase (Fads)2 desaturases have undergone during evolution. We previously showed that Chirostoma estor, one of the few representatives of freshwater atherinopsids, had the ability for LC-PUFA biosynthesis from C18 PUFA precursors, in agreement with this species having unusually high contents of DHA. The particular ancestry and pattern of LC-PUFA biosynthesis activity of C. estor make this species an excellent model for study to gain further insight into LC-PUFA biosynthetic abilities among teleosts. The present study aimed to characterize cDNA sequences encoding fatty acyl elongases and desaturases, key genes involved in the LC-PUFA biosynthesis. Results show that C. estor expresses an elongase of very long-chain FA (Elovl)5 elongase and two Fads2 desaturases displaying Δ4 and Δ6/Δ5 specificities, thus allowing us to conclude that these three genes cover all the enzymatic abilities required for LC-PUFA biosynthesis from C18 PUFA. In addition, the specificities of the C. estor Fads2 enabled us to propose potential evolutionary patterns and mechanisms for subfunctionalization of Fads2 among fish lineages.  相似文献   

15.
Elongation of very long chain fatty acids (ELOVL)5 is one of seven mammalian fatty acid condensing enzymes involved in microsomal fatty acid elongation. To determine the in vivo substrates and function of ELOVL5, we generated Elovl5(-/-) mice. Studies using liver microsomal protein from wild-type and knockout mice demonstrated that the elongation of gamma-linolenic (C18:3, n-6) to dihomo-gamma-linolenic (C20:3, n-6) and stearidonic (C18:4, n-3) to omega3-arachidonic acid (C20:4, n-3) required ELOVL5 activity. Tissues of Elovl5(-/-) mice accumulated the C18 substrates of ELOVL5 and the levels of the downstream products, arachidonic acid (C20:4, n-6) and docosahexaenoic acid (DHA, C22:6, n-3), were decreased. A consequence of decreased cellular arachidonic acid and DHA concentrations was the activation of sterol regulatory element-binding protein (SREBP)-1c and its target genes involved in fatty acid and triglyceride synthesis, which culminated in the development of hepatic steatosis in Elovl5(-/-) mice. The molecular and metabolic changes in fatty acid metabolism in Elovl5(-/-) mice were reversed by dietary supplementation with arachidonic acid and DHA. These studies demonstrate that reduced ELOVL5 activity leads to hepatic steatosis, and endogenously synthesized PUFAs are key regulators of SREBP-1c activation and fatty acid synthesis in livers of mice.  相似文献   

16.
The obesity epidemic is associated with an increased incidence of type 2 diabetes, cardiovascular morbidity and various types of cancer. A better insight into the molecular mechanisms that underlie adipogenesis and obesity may result in novel therapeutic handles to fight obesity and these associated diseases. Adipogenesis is determined by the balance between uptake of fatty acids (FA) from plasma into adipocytes, intracellular FA oxidation versus esterification of FA into triglycerides (TG), lipolysis of TG by intracellular lipases, and secretion of FA from adipocytes. Here, we review the mechanisms that are specifically involved in the entry of FA into adipose tissue. In plasma, these originating FA are either present as TG within apoB-containing lipoproteins (i.e. chylomicrons and VLDL) or as free FA bound to albumin. Kinetic studies, however, have revealed that TG are the major source of FA entering adipose tissue, both in the fed and fasted condition. In fact, studies with genetically engineered mice have revealed that the activity of lipoprotein lipase (LPL) is a major determinant for the development of obesity. As a general rule, high fat diet-induced adipogenesis is aggravated by stimulated LPL activity (e.g. by adipose tissue-specific overexpression of LPL or deficiency for apoCIII), and attenuated by inhibited LPL activity (e.g. by adipose-specific deficiency for LPL, overexpression of apoCI or angptl4, or by deficiency for apoE or the VLDL receptor). In addition, we describe that the trans-membrane transport of FA and cytoplasmic binding of FA in adipocytes can also dramatically affect adipogenesis. The relevance of these findings for human pathophysiology is discussed.  相似文献   

17.
18.
19.
20.
To investigate the molecular mechanism of fish adipocyte differentiation, the three subtypes of PPAR genes (alpha, beta and gamma) were characterized in a marine teleost red sea bream (Pagrus major). The primary structures of red sea bream PPARs exhibited high degrees of similarities to their mammalian counterparts, and their gene expression was detected in various tissues including adipose tissue, heart and hepatopancreas. During the differentiation of primary cultured red sea bream adipocytes, three PPARs showed distinct expression patterns: The alpha subtype showed a transient increase and the beta gene expression tended to increase during adipocyte differentiation whereas the gene expression level of PPARgamma did not change. These results suggest that they play distinct roles in adipocyte differentiation in red sea bream. In the differentiating red sea bream adipocytes, mammalian PPAR agonists, 15-deoxy-Delta(12,14)-prostaglandin J(2), ciglitazone and fenofibrate did not show clear effects on the adipogenic gene expression. However, 2-bromopalmitate increased the PPARgamma and related adipogenic gene expression levels, suggesting the gamma subtype plays a central role in red sea bream adipocyte differentiation and in addition, fatty acid metabolites can be used as modulators of adipocyte function. Thus our study highlighted the roles of PPARs in fish adipocyte differentiation and provided information on the molecular mechanisms of fish adipocyte development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号