首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The complete mitochondrial genome (mitogenome) of the Chinese pistacia looper Biston panterinaria was sequenced and annotated (15,517 bp). It contains the typical 37 genes of animal mitogenomes and a high A + T content (79.5%). All protein coding genes (PCGs) use standard ATN initiation codons except for cytochrome c oxidase 1 (COX1) with CGA. Eleven PCGs use a common stop codon of TAA or TAG, whereas COX2 and NADH dehydrogenase 4 (ND4) use a single T. All transfer RNA (tRNA) genes have the typical clover-leaf structure with the exception of tRNASer(AGN). We reconstructed a preliminary mitochondrial phylogeny of six ditrysian superfamilies and performed comparative analyses of inference methods (Bayesian Inference (BI), Maximum Likelihood (ML), and Maximum Parsimony (MP)), dataset compositions (including and excluding 3rd codon positions), and alignment methods (Muscle, Clustal W, and MAFFT). Our analyses indicated that inference methods and dataset compositions more significantly affected the phylogenetic results than alignment methods. BI analysis consistently revealed uncontroversial relationships with all dataset compositions. By contrast, ML analysis failed to reconstruct stable phylogeny at two nodes, whereas MP analysis had more difficulties in the tree resolution and nodal support. Distinct from most previous studies, our analyses revealed that Geometroidea had a closer lineage relationship with Bombycoidea than Noctuoidea. Similar to previous molecular studies, our analyses revealed that Hesperiidae were nested in the Papilionoidea clade, providing further evidence to the previous concept that Papilionoidea was paraphyletic, and none of the butterflies were associated with the Macroheterocera.  相似文献   

2.
The complete mitochondrial genome (mitogenome) of a female flightless geometrid moth Apocheima cinerarius was found to be 15,722 bp in length, containing 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and a control region. The A + T content of the complete mitogenome is 80.83%. The AT skew value ([A − T] / [A + T]) is 0.027. The 13 PCGs of the mitogenome start with typical ATN codons, except for cox1 with the start codon CGA. All the tRNA genes have typical cloverleaf secondary structures, except for trnSer(AGN). The secondary structures of rrnL and rrnS were predicted. Six structural domains including conserved regions (IV, V) and variable regions (I, II, III, VI) were identified in the secondary structure of rrnL. The secondary structure of rrnS consists of 3 structural domains. The control region of A. cinerarius begins with conserved motifs of “ATAGA” + 19-bp poly T. It also contains a microsatellite-like (TA)26, a stem-and-loop structure, and a poly-A stretch. Phylogenetic analysis showed that Geometroidea is more closely related to Bombycoidea than to Noctuoidea. A. cinerarius is more closely related to Biston panterinaria than to Phthonandria atrilineata, which is in accordance with the conventional morphology-based classification.  相似文献   

3.
The complete mitochondrial genome (mitogenome) of the Ailanthus silkmoth, Samia cynthia cynthia (Lepidoptera: Saturniidae) was determined. The circular genome is 15,345 bp long, and presents a typical gene organization and order for sequenced mitogenomes of Bombycidea species. The nucleotide composition of the genome is highly A+T biased, accounting for 79.86%. The AT skew of the genome is slightly negative, indicating the occurrence of more Ts than As, as found in other Saturniidae species. All protein-coding genes (PCGs) are initiated by ATN codons, except for COI and COII, which are tentatively designated by CGA and GTG, respectively, as observed in other insects. Four of 13 PCGs, including COI, COII, ATP6, and ND3, harbor the incomplete termination codons, T or TA. With an exception for tRNASer(AGN), all other tRNAs can form a typical clover-leaf structure of mitochondrial tRNA. The 359 bp A+T-rich region of S. c. cynthia contains non-repetitive sequences, but harbors several features common to the Bombycidea insects, including the motif ATAGA followed by a poly-T stretch of 19 bp, a microsatellite-like (AT)7 element preceded by the ATTTA motif, and a poly-A element upstream tRNAMet. The phylogenetic analyses support the morphology-based current hypothesis that Bombycidae and Saturniidae are monophyletic. Our result confirms that Saturniini and Attacini form a reciprocal monophyletic group within Saturniidae.  相似文献   

4.
The complete 15,223-bp mitochondrial genome (mitogenome) of Tryporyza incertulas (Walker) (Lepidoptera: Pyraloidea: Crambidae) was determined, characterized and compared with seven other species of superfamily Pyraloidea. The order of 37 genes was typical of insect mitochondrial DNA sequences described to date. Compared with other moths of Pyraloidea, the A + T biased (77.0%) of T. incertulas was the lowest. Eleven protein-coding genes (PCGs) utilized the standard ATN, but cox1 used CGA and nad4 used AAT as the initiation codons. Ten protein-coding genes had the common stop codon TAA, except nad3 having TAG as the stop codon, and cox2, nad4 using T, TA as the incomplete stop codons, respectively. All of the tRNA genes had typical cloverleaf secondary structures except trnS1(AGN), in which the dihydrouridine (DHU) arm did not form a stable stem-loop structure. There was a spacer between trnQ and nad2, which was common in Lepidoptera moths. A 6-bp motif ‘ATACTA’ between trnS2(UCN) and nad1, a 7-bp motif “AGC(T)CTTA” between trnW and trnC and a 6-bp motif “ATGATA” of overlapping region between atp8 and atp6 were found in Pyraloidea moths. The A + T-rich region contained an ‘ATAGT(A)’-like motif followed by a poly-T stretch. In addition, two potential stem-loop structures, a duplicated 19-bp repeat element, and two microsatellites ‘(TA)12’ and ‘(TA)9’ were observed in the A + T-rich region of T. incertulas mitogenome. Finally, the phylogenetic relationships of Pyraloidea species were constructed based on amino acid sequences of 13 PCGs of mitogenomes using Bayesian inference (BI) and maximum likelihood (ML) methods. These molecular-based phylogenies supported the morphological classification on relationships within Pyraloidea species.  相似文献   

5.
Mitochondrial genome (mitogenome) can provide information for genomic structure as well as for phylogenetic analysis and evolutionary biology. In this study, we present the complete mitogenome of the atlas moth, Attacus atlas (Lepidoptera: Saturniidae), a well-known silk-producing and ornamental insect with the largest wing surface area of all moths. The mitogenome of A. atlas is a circular molecule of 15,282 bp long, and its nucleotide composition shows heavily biased towards As and Ts, accounting for 79.30%. This genome comprises 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and an A + T-rich region. It is of note that this genome exhibits a slightly positive AT skew, which is different from the other known Saturniidae species. All PCGs are initiated by ATN codons, except for COI with CGA instead. Only six PCGs use a common stop codon of TAA or TAG, whereas the remaining seven use an incomplete termination codon T or TA. All tRNAs have the typical clover-leaf structure, with an exception for tRNASer(AGN). The A. atlas A + T-rich region contains non-repetitive sequences, but harbors several features common to the Bombycoidea insects. The phylogenetic relationships based on Maximum Likelihood method provide a well-supported outline of Saturniidae, which is in accordance with the traditional morphological classification and recent molecular works.  相似文献   

6.
Sasakia funebris, a member of the lepidopteran family, Nymphalidae (superfamily Papilionoidea) is a rare species and is found only in some areas of South China. In this study, the 15,233 bp long complete mitochondrial genome of S. funebris was determined, and harbors the gene arrangement identical to all other sequenced lepidopteran insects. The nucleotide composition of the genome is highly A + T biased, accounting for 81.2%. All protein-coding genes (PCGs) start with typical ATN codons, except for COI which begins with the CGA codon. All tRNAs have a typical clover-leaf secondary structure, except for tRNASer(AGN), the dihydrouridine (DHU) arm of which forms a simple loop. The S. funebris A + T-rich region of 370 bp contains several features common to the Lepidoptera insects, including the motif ATAGA followed by a 19 bp poly-T stretch, and two tandem repeats consisting of 18 bp repeat units and 14 bp repeat units. The phylogenetic analyses of Apaturinae based on mitogenome sequences showed: (S. funebris + Sasakia charonda) + (Apatura metis + Apatura ilia). This result is consistent with the morphological classification.  相似文献   

7.
Lepidoptera is one of the largest insect orders, but the phylogenetic relationships within this order, have yet to be adequately described. Among these unresolved relationships include those regarding the monophyly of the Macrolepidoptera and interfamilial relationships of the true butterflies superfamily Papilionoidea. We present two new mitochondrial genomes (mitogenomes) belonging to the butterfly family Lycaenidae to explore the phylogenetic relationships existing among lepidopteran superfamilies and true butterfly families from a mitogenome perspective, and to evaluate the characteristics of the lepidopteran mitogenomes. Our consensus phylogeny of the Lepidoptera largely supported the superfamilial relationships (((((Bombycoidea + Geometroidea) + Noctuoidea) + Pyraloidea) + Papilionoidea) + Tortricoidea), signifying a lack of support for a traditionally defined Macrolepidoptera. The familial relationships of the true butterflies concordantly recovered the previously proposed phylogenetic hypothesis (((Lycaenidae + Nymphalidae) + Pieridae) + Papilionidae). The test for the effect of optimization schemes (exclusion and inclusion of third codon position of PCGs and two rRNA genes, with and without partitions) on the resolution and relationships within the Lepidoptera have demonstrated that the majority of analyses did not substantially alter the relevant topology and node support, possibly as the result of relatively strong signal in mitogenomes for intraordinal relationships in Lepidoptera.  相似文献   

8.
The complete mitochondrial genome (mitogenome) of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae) was determined. The genome is a circular molecule 15 481 bp long. It presents a typical gene organization and order for completely sequenced lepidopteran mitogenomes, but differs from the insect ancestral type for the placement of tRNAMet. The nucleotide composition of the genome is also highly A + T biased, accounting for 80.38%, with a slightly positive AT skewness (0.010), indicating the occurrence of more As than Ts, as found in the Noctuoidea species. All protein-coding genes (PCGs) are initiated by ATN codons, except for COI, which is tentatively designated by the CGA codon as observed in other lepidopterans. Four of 13 PCGs harbor the incomplete termination codon, T or TA. All tRNAs have a typical clover-leaf structure of mitochondrial tRNAs, except for tRNASer(AGN), the DHU arm of which could not form a stable stem-loop structure. The intergenic spacer sequence between tRNASer(AGN) and ND1 also contains the ATACTAA motif, which is conserved across the Lepidoptera order. The H. cunea A+T-rich region of 357 bp is comprised of non-repetitive sequences, but harbors several features common to the Lepidoptera insects, including the motif ATAGA followed by an 18 bp poly-T stretch, a microsatellite-like (AT)8 element preceded by the ATTTA motif, an 11 bp poly-A present immediately upstream tRNAMet. The phylogenetic analyses support the view that the H. cunea is closerly related to the Lymantria dispar than Ochrogaster lunifer, and support the hypothesis that Noctuoidea (H. cunea, L. dispar, and O. lunifer) and Geometroidea (Phthonandria atrilineata) are monophyletic. However, in the phylogenetic trees based on mitogenome sequences among the lepidopteran superfamilies, Papillonoidea (Artogeia melete, Acraea issoria, and Coreana raphaelis) joined basally within the monophyly of Lepidoptera, which is different to the traditional classification.  相似文献   

9.
The complete mitogenomes of Asiotmethis zacharjini, Filchnerella helanshanensis and Pseudotmethis rubimarginis are 15,660 bp, 15,657 bp and 15,661 bp in size, respectively. All three mitogenomes contain a standard set of 13 protein - coding genes, 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and an A + T-rich region in the same order as those of the other analysed caeliferan species, including the rearrangement of trnAsp and trnLys. The putative initiation codon for the cox1 gene in the three species is CCG. The long polythymine stretch (T-stretch) in the A + T-rich region of the three species is not adjacent to the trnIle but inside the stem–loop sequence in the majority strand. The mitogenomes of F. helanshanensis and P. rubimarginis have higher overall similarities. The characterization of the three mitogenomes will enrich our knowledge on the Pamphagidae mitogenome. The phylogenetic analyses indicated that within the Caelifera, Pyrgomorphoidea is a sister group to Acridoidea. The species from the Pamphagidae form a monophyletic group, as is the case for Acrididae. Furthermore, the two families cluster as sister groups, supporting the monophyly of Acridoidea. The relationships among eight acridid subfamilies were (Cyrtacanthacridinae + (Calliptaminae + (Catantopinae + (Oxyinae + (Melanopline + (Acridinae + (Oedipodinae + Gomphocerinae))))))).  相似文献   

10.
The complete mitochondrial genome (mitogenome) of Eriogyna pyretorum (Lepidoptera: Saturniidae) was determined as being composed of 15,327 base pairs (bp), including 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The arrangement of the PCGs is the same as that found in the other sequenced lepidopteran. The AT skewness for the E. pyretorum mitogenome is slightly negative (-0.031), indicating the occurrence of more Ts than As. The nucleotide composition of the E. pyretorum mitogenome is also biased toward A + T nucleotides (80.82%). All PCGs are initiated by ATN codons, except for cytochrome c oxidase subunit 1 and 2 (cox1 and cox2). Two of the 13 PCGs harbor the incomplete termination codon by T. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA, with the exception of trnS1(AGN) and trnS2(UCN). Phylogenetic analysis among the available lepidopteran species supports the current morphology-based hypothesis that Bombycoidea, Geometroidea, Notodontidea, Papilionoidea and Pyraloidea are monophyletic. As has been previously suggested, Bombycidae (Bombyx mori and Bombyx mandarina), Sphingoidae (Manduca sexta) and Saturniidae (Antheraea pernyi, Antheraea yamamai, E. pyretorum and Caligula boisduvalii) formed a group.  相似文献   

11.
To characterize aphid mitochondrial genome (mitogenome) features, we sequenced the complete mitogenome of the Russian wheat aphid, Diuraphis noxia. The 15,784-bp mitogenome with a high A + T content (84.76%) and strong C skew (− 0.26) was arranged in the same gene order as that of the ancestral insect. Unlike typical insect mitogenomes, D. noxia possessed a large tandem repeat region (644 bp) located between trnE and trnF. Sequencing partial mitogenome of the cotton aphid (Aphis gossypii) further confirmed the presence of the large repeat region in aphids, but with different repeat length and copy number. Another motif (58 bp) tandemly repeated 2.3 times in the control region of D. noxia. All repeat units in D. noxia could be folded into stem-loop secondary structures, which could further promote an increase in copy numbers. Characterization of the D. noxia mitogenome revealed distinct mitogenome architectures, thus advancing our understanding of insect mitogenomic diversities and evolution.  相似文献   

12.
We present the complete mitogenome of a stonefly, Cryptoperla stilifera Sivec (Plecoptera; Peltoperlidae). The mitogenome was a circular molecule consisting of 15,633 nucleotides, 37 genes and a A + T-rich region. C. stilifera mitogenome was similar to Pteronarcys princeps mitogenome (Plecoptera; Pteronarcyidae). All transfer RNA genes (tRNAs) had typical cloverleaf secondary structures except for trnSer (AGN), where the stem-loop structure of the dihydrouridine (DHU) arm was missing. The A + T-rich region of C. stilifera had two stem-loops and each had two interlink. Three conserved sequence blocks (CSBs) were present in the A + T-rich regions of C. stilifera, Peltoperla tarteri and Peltoperla arcuata. Moreover, many polynucleotide stretches (Poly N, N = A, T and C) in the A + T-rich region of C. stilifera Phylogenetic relationships of Polyneopteran species were constructed based on the nucleotide sequences of 13 protein coding genes (PCGs). Both maximum likelihood (ML) and Bayesian inference (BI) analyses supported Grylloblattodea as the sister group to Plecoptera + Dermaptera and Embiidina and Phasmatodea as sister groups.  相似文献   

13.
Zhang M  Nie X  Cao T  Wang J  Li T  Zhang X  Guo Y  Ma E  Zhong Y 《Molecular biology reports》2012,39(6):6529-6536
As an important pest in the Slender Leaved Willow (Salix alba), Apatura metis is called Freyer’s purple emperor, and its mitochondrial genome is 15,236 bp long. The encoded genes for 22 tRNA genes, two ribosomal RNA (rrnL and rrnS) genes, and 13 protein-coding genes (PCGs), and a control region in the A. metis mitochondria are highly homologous to other lepidopteran species. The mitochondrial genome of A. metis is biased toward a high A + T content (A + T = 80.5%). All protein-coding genes, except for COI begins with the CGA codon as observed in other lepidopterans, start with a typical ATN initiation codon. All tRNAs show the classic clover-leaf structure, except that the dihydrouridine (DHU) arm of tRNA Ser(AGN) forms a simple loop. The A. metis A + T-rich region contains some conserved structures including a structure combining the motif ‘ATAGA’ and 19 bp poly (T) stretch, which is similar to those found in other lepidopteran mitogenomes. The phylogenetic analyses of lepidopterans based on mitogenomes sequences demonstrate that each of the six superfamilies is monophyletic, and the relationship among them is (((Noctuoidea + (Geometroidea + Bombycoidea)) + Pyraloidea) + Papilionoidea) + Tortricoidea. In Papilionoidea group, our conclusion argues that ((Lycaenidae + Pieridae) + Nymphalidae) + Papilionidae.  相似文献   

14.
The 15,338-bp long complete mitochondrial genome (mitogenome) of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae) was determined. This genome has a gene arrangement identical to those of all other sequenced lepidopteran insects, but differs from the most common type, as the result of the movement of tRNAMet to a position 5′-upstream of tRNAIle. No typical start codon of the A. yamamai COI gene is available. Instead, a tetranucleotide, TTAG, which is found at the beginning context of all sequenced lepidopteran insects was tentatively designated as the start codon for A. yamamai COI gene. Three of the 13 protein-coding genes (PCGs) harbor the incomplete termination codon, T or TA. All tRNAs formed stable stem-and-loop structures, with the exception of tRNASer(AGN), the DHU arm of which formed a simple loop as has been observed in many other metazoan mt tRNASer(AGN). The 334-bp long A + T-rich region is noteworthy in that it harbors tRNA-like structures, as has also been seen in the A + T-rich regions of other insect mitogenomes. Phylogenetic analyses of the available species of Bombycoidea, Pyraloidea, and Tortricidea bolstered the current morphology-based hypothesis that Bombycoidea and Pyraloidea are monophyletic (Obtectomera). As has been previously suggested, Bombycidae (Bombyx mori and B. mandarina) and Saturniidae (A. yamamai and Caligula boisduvalii) formed a reciprocal monophyletic group.  相似文献   

15.
Yang F  Du YZ  Wang LP  Cao JM  Yu WW 《Gene》2011,485(1):7-15
The complete mitochondrial genome sequence of Liriomyza sativae Blanchard (15,551 bp) was determined and analyzed in this study. The circular genome contained 37 genes including 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and an A + T-rich region. The initiation codons of COI and ND1 were ‘ATCA’ and ‘GTG’, respectively. ND2 gene used the truncated termination codon ‘T’. All the tRNA genes had the typical cloverleaf secondary structures except for tRNASer(AGN) gene, which was found with the absence of a DHU arm. In addition, a tRNA-like secondary structure (tRNAMet) was found in the A + T-rich region. The great difference was that the length of L. sativae A + T-rich region was 597 bp shorter than that of Liriomyza trifolii (Burgess). Meanwhile, some minor differences such as ‘TATA’ block were also observed in L. sativae in contrast to ‘TACA’ block in L. trifolii. There were also some essential structure elements such as ‘TATA’ block, ‘G(A)nT’ block, poly-T stretch and stem-and-loop structure in the A + T-rich region of L. sativae mitochondrial genome.  相似文献   

16.
The mitogenome of Chilo auricilius (Lepidoptera: Pyraloidea: Crambidae) was a circular molecule made up of 15,367 bp. Sesamia inferens, Chilo suppressalis, Tryporyza incertulas, and C. auricilius, are closely related, well known rice stem borers that are widely distributed in the main rice-growing regions of China. The gene order and orientation of all four stem borers were similar to that of other insect mitogenomes. Among the four stem borers, all AT contents were below 83%, while all AT contents of tRNA genes were above 80%. The genomes were compact, with only 121–257 bp of non-coding intergenic spacer. There are 56 or 62-bp overlapping nucleotides in Crambidae moths, but were only 25-bp overlapping nucleotides in the noctuid moth S. inferens. There was a conserved motif ‘ATACTAAA’ between trnS2 (UCN) and nad1 in Crambidae moths, but this same region was ‘ATCATA’ in the noctuid S. inferens. And there was a 6-bp motif ‘ATGATAA’ of overlapping nucleotides, which was conserved in Lepidoptera, and a 14-bp motif ‘TAAGCTATTTAAAT’ conserved in the three Crambidae moths (C. suppressalis, C. auricilius and T. incertulas), but not in the noctuid. Finally, there were no stem-and-loop structures in the two Chilo moths.  相似文献   

17.
The family Trigonalyidae is considered to be one of the most basal lineages in the suborder Apocrita of Hymenoptera. Here, we determine the first complete mitochondrial genome of the Trigonalyidae, from the species Taeniogonalos taihorina (Bischoff, 1914). This mitochondrial genome is 15,927 bp long, with a high A + T-content of 84.60%. It contains all of the 37 typical animal mitochondrial genes and an A + T-rich region. The orders and directions of all genes are different from those of previously reported hymenopteran mitochondrial genomes. Eight tRNA genes, three protein-coding genes and the A + T-rich region were rearranged, with the dominant gene rearrangement events being translocation and local inversion. The arrangements of three tRNA clusters, trnYtrnMtrnItrnQ, trnWtrnL2trnC, and trnHtrnAtrnRtrnNtrnStrnEtrnF, and the position of the cox1 gene, are novel to the Hymenoptera, even the insects. Six long intergenic spacers are present in the genome. The secondary structures of the RNA genes are normal, except for trnS2, in which the D-stem pairing is absent.  相似文献   

18.
The complete mitochondrial genome is of great importance for better understanding the genome-level characteristics and phylogenetic relationships among related species. In the present study, we determined the complete mitochondrial genome DNA sequence of the mud crab (Scylla paramamosain) by 454 deep sequencing and Sanger sequencing approaches. The complete genome DNA was 15,824 bp in length and contained a typical set of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and a putative control region (CR). Of 37 genes, twenty-three were encoded by the heavy strand (H-strand), while the other ones were encoded by light strand (L-strand). The gene order in the mitochondrial genome was largely identical to those obtained in most arthropods, although the relative position of gene tRNAHis differed from other arthropods. Among 13 protein-coding genes, three (ATPase subunit 6 (ATP6), NADH dehydrogenase subunits 1 (ND1) and ND3) started with a rare start codon ATT, whereas, one gene cytochrome c oxidase subunit I (COI) ended with the incomplete stop codon TA. All 22 tRNAs could fold into a typical clover-leaf secondary structure, with the gene sizes ranging from 63 to 73 bp. The phylogenetic analysis based on 12 concatenated protein-coding genes showed that the molecular genetic relationship of 19 species of 11 genera was identical to the traditional taxonomy.  相似文献   

19.
20.
Characteristics of mitochondrial (mt) DNA such as gene content and arrangement, as well as mt tRNA secondary structure, are frequently used in comparative genomic analyses because they provide valuable phylogenetic information. However, most analyses do not characterize the relationship of tRNA genes from the same mt genome and, in some cases, analyses overlook possible novel open reading frames (ORFs) when the 13 expected protein-coding genes are already annotated. In this study, we describe the sequence and characterization of the complete mt genome of the silver-lip pearl oyster, Pinctada maxima. The 16,994-bp mt genome contains the same 13 protein-coding genes (PCGs) and two ribosomal RNA genes typical of metazoans. The gene arrangement, however, is completely distinct from that of all other available bivalve mt genomes, and a unique tRNA gene family is observed in this genome. The unique tRNA gene family includes two trnS− AGY and trnQ genes, a trnM isomerism, but it lacks trnS− CUN. We also report the first clear evidence of alloacceptor tRNA gene recruitment (trnP → trnS− AGY) in mollusks. In addition, a novel ORF (orfUR1) expressed at high levels is present in the mt genome of this pearl oyster. This gene contains a conserved domain, “Oxidored_q1_N”, which is a member of Complex I and thus may play an important role in key biological functions. Because orfUR1 has a very similar nucleotide composition and codon bias to that of other genes in this genome, we hypothesize that this gene may have been moved to the mt genome via gene transfer from the nuclear genome at an early stage of speciation of P. maxima, or it may have evolved as a result of gene duplication, followed by rapid sequence divergence. Lastly, a 319-bp region was identified as the possible control region (CR) even though it does not correspond to the longest non-coding region in the genome. Unlike other studies of mt genomes, this study compares the evolutionary patterns of all available bivalve mt tRNA and atp8 genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号