首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Gene set analysis (GSA) methods test the association of sets of genes with phenotypes in gene expression microarray studies. While GSA methods on a single binary or categorical phenotype abounds, little attention has been paid to the case of a continuous phenotype, and there is no method to accommodate correlated multiple continuous phenotypes.

Result

We propose here an extension of the linear combination test (LCT) to its new version for multiple continuous phenotypes, incorporating correlations among gene expressions of functionally related gene sets, as well as correlations among multiple phenotypes. Further, we extend our new method to its nonlinear version, referred as nonlinear combination test (NLCT), to test potential nonlinear association of gene sets with multiple phenotypes. Simulation study and a real microarray example demonstrate the practical aspects of the proposed methods.

Conclusion

The proposed approaches are effective in controlling type I errors and powerful in testing associations between gene-sets and multiple continuous phenotypes. They are both computationally effective. Naively (univariately) analyzing a group of multiple correlated phenotypes could be dangerous. R-codes to perform LCT and NLCT for multiple continuous phenotypes are available at http://www.ualberta.ca/~yyasui/homepage.html.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-260) contains supplementary material, which is available to authorized users.  相似文献   

2.
Gene set analysis (GSA) incorporates biological information into statistical knowledge to identify gene sets differently expressed between two or more phenotypes. It allows us to gain an insight into the functional working mechanism of cells beyond the detection of differently expressed gene sets. In order to evaluate the competence of GSA approaches, three self-contained GSA approaches with different statistical methods were chosen; Category, Globaltest and Hotelling's T2 together with their assayed power to identify the differences expressed via simulation and real microarray data. The Category does not take care of the correlation structure, while the other two deal with correlations.  相似文献   

3.

Context

The deficiency of steroid 11β-hydroxylase is caused by mutations in the CYP11B1 gene and is the second major form of congenital adrenal hyperplasia associated with hypertension.

Objective

The objective of this study was to screen the CYP11B1 gene for mutations in one Vietnamese male suffering from congenital adrenal hyperplasia.

Patient

The patient (46,XY) had congenital adrenal hyperplasia. The clinical manifestations presented precocious puberty, hyper-pigmentation and high blood pressure at 4 years.

Results

The patient was a homozygous carrier of a novel mutation located in exon 7 containing a premature stop codon instead of tyrosine at 395 (p.Y395X).

Conclusion

We have identified a novel mutant of the CYP11B1 gene in one Vietnamese family associated with phenotypes of congenital adrenal hyperplasia. The mutant gene p.Y395X produces a truncated form of the polypeptide and abolishes the enzyme activities, leading to a severe phenotype of congenital adrenal hyperplasia.  相似文献   

4.

Background

HuR (human antigen R) is a ubiquitously expressed member of the Hu/ELAV family of proteins that is involved in diverse biological processes. HuR has also been shown to play an important role in cell cycle arrest during replicative senescence in both human and mouse cells. Senescent cells not only halt their proliferation, but also activate the secretion of proinflammatory cytokines. A persistent DNA damage response is essential for the senescence-associated secretory phenotype (SASP), and increasing evidence has suggested that the SASP is associated with malignancy.

Methods

Senescence-associated phenotypes were analyzed in MEFs and other cell line in which HuR expression is inhibited by sh-RNA-mediated knockdown.

Results

RNAi-mediated HuR inhibition resulted in an increase in SASP-related cytokines. The induction of SASP factors did not depend on ARF–p53 pathway-mediated cell cycle arrest, but required NF-κB activity. In the absence of HuR, cells were defective in the DNA-damage response, and single strand DNA breaks accumulated, which may have caused the activation of NF-κB and subsequent cytokine induction.

Conclusions

In the absence of HuR, cells exhibit multiple senescence-associated phenotypes. Our findings suggest that HuR regulates not only the replicative lifespan, but also the expression of SASP-related cytokines in mouse fibroblasts.

General significance

RNA-binding protein HuR protects cells from undergoing senescence. Senescence-associated phenotypes are accelerated in HuR-deficient cells.  相似文献   

5.
6.

Background

Recurrent graft infection limited the effect of LT, early recognition and prophylaxis of HBV recurrence are very important, and interleukin 28B (IL‐28B) gene was reported to be associated with HBV infection.

Aims

To explore the association between IL-28B single-nucleotide polymorphisms (SNPs) and graft re-infection after liver transplantation(LT).

Methods

21 recipients with hepatitis B virus(HBV) recurrence and 157 recipients without HBV recurrence were included. We studied three SNPs in the promoter region of IL-28B gene at the positions rs12979860, rs12980275 and rs8099917 by HRM analysis (high-resolution melting curve analysis).

Results

Hepatic allograft dysfunction was more likely to be associated with IL-28B SNPs. However, there was no significant difference in the frequencies of IL-28B gene distribution in recipients with or without HBV recurrence.

Conclusion

IL-28B gene polymorphism may be associated with the prognosis of LT recipients but it needs more experiments.  相似文献   

7.

Background

Farnesyl pyrophosphate synthase (FPPS) is a key regulatory enzyme in the biosynthesis of cholesterol and in the post-translational modification of signaling proteins. It has been reported that non-bisphosphonate FPPS inhibitors targeting its allosteric binding pocket are potentially important for the development of promising anti-cancer drugs.

Methods

The following methods were used: organic syntheses of non-bisphosphonate quinoline derivatives, enzyme inhibition studies, fluorescence titration assays, synergistic effect studies of quinoline derivatives with zoledronate, ITC studies for the binding of FPPS with quinoline derivatives, NMR-based HAP binding assays, molecular modeling studies, fluorescence imaging assay and MTT assays.

Results

We report our syntheses of a series of quinoline derivatives as new FPPS inhibitors possibly targeting the allosteric site of the enzyme. Compound 6b showed potent inhibition to FPPS without significant hydroxyapatite binding affinity. The compound showed synergistic inhibitory effect with active-site inhibitor zoledronate. ITC experiment confirmed the good binding effect of compound 6b to FPPS, and further indicated the binding ratio of 1:1. Molecular modeling studies showed that 6b could possibly bind to the allosteric binding pocket of the enzyme. The fluorescence microscopy indicated that these compounds could get into cancer cells.

Conclusions

Our results showed that quinoline derivative 6b could become a new lead compound for further optimization for cancer treatment.

General significance

The traditional FPPS active-site inhibitors bisphosphonates show poor membrane permeability to tumor cells, due to their strong polarity. The development of new non-bisphosphonate FPPS inhibitors with good cell membrane permeability is potentially important.  相似文献   

8.

Background

Receptor for advanced glycation end-product (RAGE) gene polymorphism 2245G/A is associated with diabetic retinopathy (DR). However, the mechanism on how it affects the disease development is still unclear.

Aim

This study aims to investigate the relationship between 2245G/A RAGE gene polymorphism and selected pro-inflammatory, oxidative-glycation markers in DR patients.

Methods

A total of 371 unrelated type 2 diabetic patients [200 with retinopathy, 171 without retinopathy (DNR)] and 235 healthy subjects were recruited. Genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism method followed by DNA sequencing. The nuclear and cytosolic extracts from peripheral blood mononuclear cells were used for nuclear factor kappa B (NF-κB) p65 and superoxide dismutase activity measurement respectively. Plasma was used for glutathione peroxidase activity, advanced oxidation protein product (AOPP), monocyte chemoattractant protein (MCP)-1, pentosidine and soluble RAGE (sRAGE) measurements.

Results

DR patients with 2245GA genotype had significantly elevated levels of activated NF-κB p65, plasma MCP-1, AOPP and pentosidine but lower level of sRAGE when compared to DR patients with wild-type 2245GG.

Conclusion

The RAGE gene polymorphism 2245G/A is associated with pro-inflammatory, oxidative-glycation markers and circulating sRAGE in DR patients. Patients with 2245GA RAGE genotype could aggravate DR possibly via NF-κB mediated inflammatory pathway.  相似文献   

9.
10.

Background

Bladder cancer has the peculiarity of shedding neoplastic cells and their components in urine representing a valuable opportunity to detect diagnostic markers. Using a semi-quantitative method we previously demonstrated that the levels of Tyr-phosphorylated proteins (TPPs) are highly increased in bladder cancer tissues and that soluble TPPs can also be detected in patient's urine samples. Although the preliminary evaluation showed very promising specificity and sensitivity, insufficient accuracy and very low throughput of the method halted the diagnostic evaluation of the new marker. To overcome this problem we developed a quantitative methodology with high sensitivity and accuracy to measure TPPs in urine.

Methods

The Immobilized Metal Affinity Chromatography (IMAC) was miniaturized in a 96 well format. Luminescence, visible and infrared fluorescence antibody-based detection methods were comparatively evaluated.

Results

Due to their low abundance we evidenced that both phosphoprotein enrichment step and very sensitive detection methods are required to detect TPPs in urine samples. To pursue high throughput, reproducibility and cost containment, which are required for bladder cancer screening programs, we coupled the pre-analytical IMAC procedure with high sensitive detection phases (infrared fluorescence or chemiluminescence) in an automated platform.

Conclusions

A high throughput method for measuring with high sensitivity TPP levels in urine samples is now available for large clinical trial for the establishment of the diagnostic and predictive power of TPPs as bladder cancer marker.

General significance

The new assay represents the first quantitative and high throughput method for the measurement of TPPs in urine.  相似文献   

11.

Aims

Polycystic ovary syndrome (PCOS), a common female endocrine disorder, represents a wide range of clinical manifestations and disease severity. Recent studies suggest an association between gene variants involved in vitamin D metabolism and common metabolic disturbances in PCOS. We aimed to examine the association of vitamin D receptor (VDR) gene variant with PCOS susceptibility and the severity of disease phenotype.

Methods

All participants, including 260 PCOS women (cases) and 221 normoovulatory women (controls), were recruited from a reproductive endocrinology clinic. Cases were divided into the severe and mild PCOS phenotype groups, based on their clinical and paraclinical features. An adenosine to guanine single nucleotide polymorphism of VDR gene (rs757343) was genotyped using the PCR–RFLP method.

Results

Distributions of genotypes and alleles did not differ between cases and controls, indicating that this SNP is not associated with increased risk for PCOS. However, this SNP was found to be associated with the severity of the PCOS phenotype. In particular, presence of the A allele is associated with a 74% increased risk of severe phenotype development (OR, 1.74; 95% CI, 1.07–2.82).

Conclusion

The genetic variant of the VDR was found to have an association with severity of clinical features of PCOS, but none with disease risk.  相似文献   

12.

Background

The majority of the disease-causing mutations affect protein stability, but not functional sites and are amenable, in principle, to be treated with pharmacological chaperones. These drugs enhance the thermodynamic stability of their targets. Fabry disease, a disorder caused by mutations in the gene encoding lysosomal alpha-galactosidase, represents an excellent model system to develop experimental protocols to test the efficiency of such drugs.

Methods

The stability of lysosomal alpha-galactosidase under different conditions was studied by urea-induced unfolding followed by limited proteolysis and Western blotting.

Results

We measured the concentration of urea needed to obtain half-maximal unfolding because this parameter represents an objective indicator of protein stability.

Conclusions

Urea-induced unfolding is a versatile technique that can be adapted to cell extracts containing tiny amounts of wild-type or mutant proteins. It allows testing of protein stability as a function of pH, in the presence or in the absence of drugs. Results are not influenced by the method used to express the protein in transfected cells.

General significance

Scarce and dispersed populations pose a problem for the clinical trial of drugs for rare diseases. This is particularly true for pharmacological chaperones that must be tested on each mutation associated with a given disease. Diverse in vitro tests are needed. We used a method based on chemically induced unfolding as a tool to assess whether a particular Fabry mutation is responsive to pharmacological chaperones, but, by no means is our protocol limited to this disease.  相似文献   

13.

Background

Recently, particle bombardment has become increasingly popular as a transfection method, because of a reduced dependency on target cell characteristics. In this study, we evaluated in vitro gene transfer by particle bombardment.

Methods

gWIZ luciferase and gWIZ green fluorescent protein (GFP) plasmids were used as reporter genes. Mammalian cell lines HEK 293, MCF7 and NIH/3T3 were used in the transfection experiments. Transfection was performed by bombardment of the cells with gene-coated gold particles using the Helios Gene Gun. The technology was assessed by analyzing gene expression and cell damage. Cell damage was evaluated by MTT assay.

Results

This technology resulted in efficient in vitro transfection, even in the cells which are difficult to transfect. The gene expression was dependent on the gene gun's helium pressure, the sizes of the gold particles, the amount of the particles and DNA loading, while cell viability was mostly dependent on helium pressure and amount of the gold particles.

Conclusions

This technology was useful to transfection of cells. Optimal transfection conditions were determined to be between 75 and 100 psi of helium pressure, 1.0 to 1.6 μm gold particle size and 0.5 mg of gold particle amount with a loading ratio of 4 μg DNA/mg gold particles.

General significance

These findings will be useful in the design of gene gun device, and bring further improvements to the in vitro and in vivo transfection studies including gene therapy and vaccination.  相似文献   

14.

Background

Meningioma is the second most common primary tumor of the central nervous system, and multiple genetic and environmental factors contribute to its etiology. Methylene tetrahydrofolate reductase (MTHFR) is a pivotal enzyme in folate metabolism. We conducted a case–control study to investigate the association of the MTHFR gene and meningioma in a Han population in northern China.

Methods

We genotyped two SNPs (C677T and A1298C) using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). In this study 317 meningioma patients were compared to 320 normal controls. Data were analyzed by SPSS 13.0 and HaploView software.

Results

We found a significant difference in the frequency distribution of 677CC and 677TT between cases and control groups; another SNP exhibited no differences in any genotype between the two cohorts.

Conclusion

The results revealed that variations of the MTHFR gene were associated with meningioma; this finding indicates that the MTHFR gene potentially plays an important role in the pathogenesis of meningioma in the Northern Chinese Han population.  相似文献   

15.

Background

Despite detailed knowledge about the structure and signaling properties of individual collagen receptors, much remains to be learned about how these receptors participate in linking cells to fibrillar collagen matrices in tissues. In addition to collagen-binding integrins, a group of proteins with affinity both for fibrillar collagens and integrins link these two protein families together. We have introduced the name COLINBRI (COLlagen INtegrin BRIdging) for this set of molecules. Whereas collagens are the major building blocks in tissues and defects in these structural proteins have severe consequences for tissue integrity, the mild phenotypes of the integrin type of collagen receptors have raised questions about their importance in tissue biology and pathology.

Scope of review

We will discuss the two types of cell linkages to fibrillar collagen (direct- versus indirect COLINBRI-mediated) and discuss how the parallel existence of direct and indirect linkages to collagens may ensure tissue integrity.

Major conclusions

The observed mild phenotypes of mice deficient in collagen-binding integrins and the relatively restricted availability of integrin-binding sequences in mature fibrillar collagen matrices support the existence of indirect collagen-binding mechanisms in parallel with direct collagen binding in vivo.

General significance

A continued focus on understanding the molecular details of cell adhesion mechanisms to collagens will be important and will benefit our understanding of diseases like tissue- and tumor fibrosis where collagen dynamics are disturbed. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

16.

Background

Brazilian green propolis (BGP), a resinous substance produced from Baccharis dracunculifolia by Africanized honey bees (Apis mellifera), is used as a folk medicine. Our present study explores the retinoid X receptor (RXR) agonistic activity of BGP and the identification of an RXR agonist in its extract.

Methods

RXRα agonistic activity was evaluated using a luciferase reporter gene assay. Isolation of the RXRα agonist from the ethanolic extract of BGP was performed using successive silica gel and a reversed phase column chromatography. The interaction between the isolated RXRα agonist and RXRα protein was predicted by a receptor–ligand docking simulation. The nuclear receptor (NR) cofactor assay was used to estimate whether the isolated RXRα agonist bound to various NRs, including RXRs and peroxisome proliferator-activated receptors (PPARs). We further examined its effect on adipogenesis in 3T3-L1 fibroblasts.

Results

We identified drupanin as an RXRα agonist with an EC50 value of 4.8 ± 1.0 μM. Drupanin activated three RXR subtypes by a similar amount and activated PPARγ moderately. Additionally, drupanin induced adipogenesis and elevated aP2 mRNA levels in 3T3-L1 fibroblasts.

Conclusions

Drupanin, a component of BGP, is a novel RXR agonist with slight PPARγ agonistic activity.

General significance

This study revealed for the first time that BGP activates RXR and drupanin is an RXR agonist in its extract.  相似文献   

17.

Background

Systemic lupus erythematosus (SLE) is an autoimmune disease, with multiple genetic and environmental factors involving in its etiology. The toll-like receptor 9 (TLR9) gene has been reported to have important roles in the development and progression of SLE. We performed a case–control study to investigate the effects of 4 SNPs in the TLR9 gene in the development of SLE in Northern Chinese population.

Methods

Four SNPs including rs187084, rs5743836, rs352139 and rs352140 were genotyped using the SNaPshot® method. A group of 430 SLE patients were compared to 424 normal controls. Data were analyzed by SPSS 17.0 and HaploView v 4.1 software.

Results

The frequency distributions of SNP rs351240 and haplotype H2 (TGCT) and H3 (CATT) were found to differ significantly between patient and control groups (p < 0.05), while other SNPs and haplotypes showed no significant difference between the two cohorts (p > 0.05).

Conclusion

The results revealed that variations in the TLR9 gene are associated with SLE, indicating that TLR9 may play an important role in the pathogenesis of SLE in the northern Chinese Han population.  相似文献   

18.

Background

The neurodegenerative disease Friedreich's ataxia is the result of frataxin deficiency. Frataxin is a mitochondrial protein involved in iron–sulfur cluster (Fe–S) cofactor biogenesis, but its functional role in this pathway is debated. This is due to the interconnectivity of iron metabolic and oxidative stress response pathways that make distinguishing primary effects of frataxin deficiency challenging. Since Fe–S cluster assembly is conserved, frataxin overexpression phenotypes in a simple eukaryotic organism will provide additional insight into frataxin function.

Methods

The Schizosaccharomyces pombe frataxin homologue (fxn1) was overexpressed from a plasmid under a thiamine repressible promoter. The S. pombe transformants were characterized at several expression strengths for cellular growth, mitochondrial organization, iron levels, oxidative stress, and activities of Fe–S cluster containing enzymes.

Results

Observed phenotypes were dependent on the amount of Fxn1 overexpression. High Fxn1 overexpression severely inhibited S. pombe growth, impaired mitochondrial membrane integrity and cellular respiration, and led to Fxn1 aggregation. Cellular iron accumulation was observed at moderate Fxn1 overexpression but was most pronounced at high levels of Fxn1. All levels of Fxn1 overexpression up-regulated oxidative stress defense and mitochondrial Fe–S cluster containing enzyme activities.

Conclusions

Despite the presence of oxidative stress and accumulated iron, activation of Fe–S cluster enzymes was common to all levels of Fxn1 overexpression; therefore, Fxn1 may regulate the efficiency of Fe–S cluster biogenesis in S. pombe.

General Significance

We provide evidence that suggests that dysregulated Fe–S cluster biogenesis is a primary effect of both frataxin overexpression and deficiency as in Friedreich's ataxia.  相似文献   

19.

Background

Hepatocellular carcinoma (HCC) associated to infection with hepatitis C virus (HCV) has become the fastest-rising cause of cancer-related deaths. Genetic variations may play an important role in the development of HCC in HCV patients. Ghrelin exerts anti-inflammatory, antifibrotic and hepatoprotective effects on chronically injured hepatic tissues. Ghrelin gene shows several single nucleotide polymorphisms (SNPs) including − 604G/A, Arg51Gln, and Leu72Met. Hemochromatosis gene (HFE) mutations namely C282Y and H63D may cause hepatic iron overload, thus increasing the risk of HCC in HCV patients.

Aim

To investigate the association of progression of HCC with ghrelin and HFE gene polymorphisms in HCV Egyptian patients.

Methods

Seventy-nine chronic HCV patients (thirty-nine developed HCC and forty did not), and forty healthy control subjects were included in the study. The polymorphisms were evaluated by PCR/RFLP analysis, and related protein levels were measured by either ELISA or colorimetric assays.

Results

The three tested SNPs on ghrelin gene were detected in the studied groups, only one SNP (Arg51Gln) showed significantly higher GA, AA genotypes and A allele frequencies in hepatitis C patients who developed HCC than in hepatitis C patients without HCC and controls. Of the two mutations studied on HFE gene only H63D heterozygous allele was detected, and its frequency did not statistically differ among studied groups.

Conclusion

Our results suggest that A allele at position 346 of the ghrelin gene is associated with susceptibility to HCC in hepatitis C patients.  相似文献   

20.

Background

Insight into protein–protein interactions (PPIs) is highly desirable in order to understand the physiology of cellular events. This understanding is one of the challenges in biochemistry and molecular biology today, especially for eukaryotic membrane proteins where hurdles of production, purification and structural determination must be passed.

Scope of review

We have explored the common strategies used to find medically relevant interaction partners of aquaporins (AQPs). The most frequently used methods to detect direct contact, yeast two-hybrid interaction assay and co-precipitation, are described together with interactions specifically found for the selected targets AQP0, AQP2, AQP4 and AQP5.

Major conclusions

The vast majority of interactions involve the aquaporin C-terminus and the characteristics of the interaction partners are strikingly diverse. While the well-established methods for PPIs are robust, a novel approach like bimolecular fluorescence complementation (BiFC) is attractive for screening many conditions as well as transient interactions. The ultimate goal is structural evaluation of protein complexes in order to get mechanistic insight into how proteins communicate at a molecular level.

General significance

What we learn from the human aquaporin field in terms of method development and communication between proteins can be of major use for any integral membrane protein of eukaryotic origin. This article is part of a Special Issue entitled Aquaporins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号