首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Copy number variation refers to regions along chromosomes that harbor a type of structural variation, such as duplications or deletions. Copy number variants (CNVs) play a role in many important traits as well as in genetic diversity. Previous analyses of chickens using array comparative genomic hybridizations or single‐nucleotide polymorphism chip assays have been performed on various breeds and genetic lines to discover CNVs. In this study, we assessed individuals from two highly inbred (inbreeding coefficiency > 99.99%) lines, Leghorn G‐B2 and Fayoumi M15.2, to discover novel CNVs in chickens. These lines have been previously studied for disease resistance, and to our knowledge, this represents the first global assessment of CNVs in the Fayoumi breed. Genomic DNA from individuals was examined using the Agilent chicken 244 K comparative genomic hybridization array and quantitative PCR. We identified a total of 273 CNVs overall, with 112 CNVs being novel and not previously reported. Quantitative PCR using the standard curve method validated a subset of our array data. Through enrichment analysis of genes within CNV regions, we observed multiple chromosomes, terms and pathways that were significantly enriched, largely dealing with the major histocompatibility complex and immune responsiveness. Using an additional round of computational and statistical analysis with a different bioinformatic pipeline, we identified 43 CNVs among these as high‐confidence regions, 14 of which were found to be novel. We further compared and contrasted individuals of the two inbred lines to discover regions that have a significant difference in copy number between lines. A total of 40 regions had significant deletions or duplications between the lines. Gene Ontology analysis of genomic regions containing CNVs between lines also was performed. This between‐line candidate CNV list will be useful in studies with these two unique genetic lines, which may harbor variations that underlie quantitative trait loci for disease resistance and other important traits. Through the global discovery of novel CNVs in chicken, these data also provide resources for further genetic and functional genomics studies.  相似文献   

2.
拷贝数变异的全基因组关联分析   总被引:3,自引:0,他引:3  
基因组拷贝数变异(copy number variations,CNVs)是指与基因组参考序列相比,基因组中≥1 kb的DNA片段插入、缺失和/或扩增,及其互相组合衍生出的复杂变异.由于其具有分布范围广、可遗传、相对稳定和高度异质性等特点,目前认为,CNVs是一种新的可以作为疾病易感标志的基因组DNA多态性,其变异引起的基因剂量改变可以导致表型改变.最近,一种基于CNVs的新的疾病易感基因鉴定策略——CNV全基因组关联分析开始出现,这一策略和传统的基于单核苷酸多态性的关联分析具有互补性,通过认识基因组结构变异可以认识复杂疾病的分子机制和遗传基础.  相似文献   

3.
Copy number variation (CNV) is implicated in important traits in multiple crop plants, but can be challenging to genotype using conventional methods. The Rhg1 locus of soybean, which confers resistance to soybean cyst nematode (SCN), is a CNV of multiple 31.2‐kb genomic units each containing four genes. Reliable, high‐throughput methods to quantify Rhg1 and other CNVs for selective breeding were developed. The CNV genotyping assay described here uses a homeologous gene copy within the paleopolyploid soybean genome to provide the internal control for a single‐tube TaqMan copy number assay. Using this assay, CNV in breeding populations can be tracked with high precision. We also show that extensive CNV exists within Fayette, a released, inbred SCN‐resistant soybean cultivar with a high copy number at Rhg1 derived from a single donor parent. Copy number at Rhg1 is therefore unstable within a released variety over a relatively small number of generations. Using this assay to select for individuals with altered copy number, plants were obtained with both increased copy number and increased SCN resistance relative to control plants. Thus, CNV genotyping technologies can be used as a new type of marker‐assisted selection to select for desirable traits in breeding populations, and to control for undesirable variation within cultivars.  相似文献   

4.
Germline copy number variation (CNV) is considered to be an important form of human genetic polymorphisms. Previous studies have identified amounts of CNVs in human genome by advanced technologies, such as comparative genomic hybridization, single nucleotide genotyping, and high-throughput sequencing. CNV is speculated to be derived from multiple mechanisms, such as nonallelic homologous recombination (NAHR) and nonhomologous end-joining (NHEJ). CNVs cover a much larger genome scale than single nucleotide polymorphisms (SNPs), and may alter gene expression levels by means of gene dosage, gene fusion, gene disruption, and long-range regulation effects, thus affecting individual phenotypes and playing crucial roles in human pathogenesis. The number of studies linking CNVs with common complex diseases has increased dramatically in recent years. Here, we provide a comprehensive review of the current understanding of germline CNVs, and summarize the association of germline CNVs with the susceptibility to a wide variety of human diseases that were identified in recent years. We also propose potential issues that should be addressed in future studies.  相似文献   

5.
基因组拷贝数变异及其突变机理与人类疾病   总被引:1,自引:0,他引:1  
Du RQ  Jin L  Zhang F 《遗传》2011,33(8):857-869
拷贝数变异(Copy number variation,CNV)是由基因组发生重排而导致的,一般指长度为1 kb以上的基因组大片段的拷贝数增加或者减少,主要表现为亚显微水平的缺失和重复。CNV是基因组结构变异(Structural variation,SV)的重要组成部分。CNV位点的突变率远高于SNP(Single nucleotide polymorphism),是人类疾病的重要致病因素之一。目前,用来进行全基因组范围的CNV研究的方法有:基于芯片的比较基因组杂交技术(array-based comparative genomic hybridization,aCGH)、SNP分型芯片技术和新一代测序技术。CNV的形成机制有多种,并可分为DNA重组和DNA错误复制两大类。CNV可以导致呈孟德尔遗传的单基因病与罕见疾病,同时与复杂疾病也相关。其致病的可能机制有基因剂量效应、基因断裂、基因融合和位置效应等。对CNV的深入研究,可以使我们对人类基因组的构成、个体间的遗传差异、以及遗传致病因素有新的认识。  相似文献   

6.
拷贝数变异: 基因组多样性的新形式   总被引:1,自引:0,他引:1  
吴志俊  金玮 《遗传》2009,31(4):339-347
基因拷贝数变异是指DNA片段大小范围从kb到Mb的亚微观突变, 是一可能具有致病性、良性或未知临床意义的基因组改变。Fosmid末端配对序列比较策略、比较基因组杂交芯片是当前较多使用的检测手段。染色体非等位的同源重排、非同源突变和非b DNA结构是造成基因组拷贝数变异的重要原因。拷贝数变异可导致不同程度的基因表达差异, 对正常表型的构成及疾病的发生发展具有一定作用。文章在总结基因拷贝数变异的认识过程和研究策略的基础上, 分析了拷贝数变异的形成和作用机制, 介绍了第一代人类基因组拷贝数变异图谱, 阐述了拷贝数变异研究的临床意义, 提示在探索疾病相关的遗传变异时不能错失拷贝数变异这一基因组多样性的新形式。  相似文献   

7.
Copy number variants (CNVs) are pervasive in several animal and plant genomes and contribute to shaping genetic diversity. In barley, there is evidence that changes in gene copy number underlie important agronomic traits. The recently released reference sequence of barley represents a valuable genomic resource for unveiling the incidence of CNVs that affect gene content and for identifying sequence features associated with CNV formation. Using exome sequencing and read count data, we detected 16 605 deletions and duplications that affect barley gene content by surveying a diverse panel of 172 cultivars, 171 landraces, 22 wild relatives and other 32 uncategorized domesticated accessions. The quest for segmental duplications (SDs) in the reference sequence revealed many low‐copy repeats, most of which overlap predicted coding sequences. Statistical analyses revealed that the incidence of CNVs increases significantly in SD‐rich regions, indicating that these sequence elements act as hot spots for the formation of CNVs. The present study delivers a comprehensive genome‐wide study of CNVs affecting barley gene content and implicates SDs in the molecular mechanisms that lead to the formation of this class of CNVs.  相似文献   

8.
Copy number variations (CNVs) have been shown to be associated with several diseases. They can cause deviation of genotypes from Hardy-Weinberg Equilibrium (HWE). Genetic case-control association studies in Thais revealed that genotype distribution of CAPN10 Indel19 was deviated from HWE after correction of genotyping error. Therefore, we aim to identify CNVs within CAPN10 Indel19 region. The semi-quantitative denaturating high performance liquid chromatography (DHPLC) method was used to detect CNVs in the region of CAPN10 Indel19 marker in cohort of 305 patients with type 2 diabetes and 250 control subjects without diabetes. CNVs in the region of CAPN10 Indel19 was successfully detected by DHPLC. After correction of genotype calling based on the status of identified CNVs, CAPN10 Indel19 genotypes were well-fitted for HWE (p>0.05). However, we did not find association between CNV genotypes and risk of type 2 diabetes in our population. CNVs in CAPN10 have been identified in Thais. These CNVs lead to deviation from HWE of CAPN10 Indel19 genotypes. After excluding identified CNVs from the analysis, CAPN10 Indel19 was associated with type 2 diabetes. The information obtained from our study would be helpful for genotyping accuracies of SNPs residing in the CNVs region.  相似文献   

9.
The FCGR3 locus encoding the low affinity activating receptor FcγRIII, plays a vital role in immunity triggered by cellular effector and regulatory functions. Copy number of the genes FCGR3A and FCGR3B has previously been reported to affect susceptibility to several autoimmune diseases and chronic inflammatory conditions. However, such genetic association studies often yield inconsistent results; hence require assays that are robust with low error rate. We investigated the accuracy and efficiency in estimating FCGR3 CNV by comparing Sequenom MassARRAY and paralogue ratio test-restriction enzyme digest variant ratio (PRT-REDVR). In addition, since many genetic association studies of FCGR3B CNV were carried out using real-time quantitative PCR, we have also included the evaluation of that method’s performance in estimating the multi-allelic CNV of FCGR3B. The qPCR assay exhibited a considerably broader distribution of signal intensity, potentially introducing error in estimation of copy number and higher false positive rates. Both Sequenom and PRT-REDVR showed lesser systematic bias, but Sequenom skewed towards copy number normal (CN = 2). The discrepancy between Sequenom and PRT-REDVR might be attributed either to batch effects noise in individual measurements. Our study suggests that PRT-REDVR is more robust and accurate in genotyping the CNV of FCGR3, but highlights the needs of multiple independent assays for extensive validation when performing a genetic association study with multi-allelic CNVs.  相似文献   

10.
H. Zhou  D. Li  W. Liu  N. Yang 《Animal genetics》2013,44(3):276-284
Copy number variation (CNV) is considered an important genetic variation, contributing to many economically important traits in the chicken. Although CNVs can be detected using a comparative genomic hybridization array, the high‐density SNP array has provided an alternative way to identify CNVs in the chicken. In the current study, a chicken 60K SNP BeadChip was used to identify CNVs in two distinct chicken genetic lines (White Leghorn and dwarf) using the penncnv program. A total of 209 CNV regions were identified, distributing on chromosomes 1–22 and 24–28 and encompassing 13.55 Mb (1.42%) of chicken autosomal genome area. Three of seven selected CNVs (73.2% individuals) were completely validated by quantitative PCR. To our knowledge, this is the first report in the chicken identifying CNVs using a SNP array. Identification of 190 new identified CNVs illustrates the feasibility of the chicken 60K SNP BeadChip to detect CNVs in the chicken, which lays a solid foundation for future analyses of associations of CNVs with economically important phenotypes in chickens.  相似文献   

11.
Copy number variants (CNVs) are pervasive in the human genome and are responsible for many Mendelian diseases and genomic disorders. The detection of CNVs is an essential element of a complete mutation screening strategy. Many techniques have been developed for gene dosage testing. Multiplex ligation-dependent probe amplification (MLPA) is a robust, easy and flexible technique that can detect both deletions and duplications for more than 40 loci in one assay. It has been widely used in research and diagnostic laboratories. We routinely develop our own MLPA assays for quick validation of array comparative genomic hybridization (CGH) findings. Here we discuss the general principles and critical aspects of MLPA assay development and validation using all synthetic MLPA probes. We believe that MLPA will play important roles in the rapid detection of genomic disorders associated with genomic imbalances, the confirmation of pathogenic mutations involving exonic deletions/duplications, CNV genotyping and population frequency analysis of CNVs.  相似文献   

12.
With the completion of Human Genome Project,International HapMap Project and the publication of copy number variation in human genome,a great number of accurate,rapid,and cost-effective technologies for SNP analysis have been developed,promoting the research of the complex diseases.This article presents a review of widely used genotyping techniques,and the progress and prospect in the study of complex diseases in terms of the projects and achievements of Chinese National Human Genome Center at Shanghai(CHGC...  相似文献   

13.
Increasing evidence indicates that copy number variants (CNVs) have great relevance to common human diseases. In α-thalassemia, clinical phenotypes are related to genotypes, specifically copy number changes in the human α-globin gene cluster. Assays are available for high-throughput screening of unknown CNVs genome-wide and also for targeted CNV genotyping at loci associated with genetic disorders. Here we describe a universal quantitative approach based on nested real-time quantitative polymerase chain reaction for accurate determination of copy numbers at multiple particular gene loci. We used the α-globin gene as a model system, obtaining the reproducibility and sensitivity to analyze different gene copies and testing 95 DNA samples with 16 different known genotypes. Our results showed that this approach has high sensitivity and low standard deviations for correctly genotyping DNA samples containing different copy numbers of the α1 and α2 globin genes. Our method is rapid, simple, and reliable, and it could be used to simultaneously screen for α-thalassemia deletions or triplications. Moreover, it has potential as a versatile technology for the rapid genotyping of known CNVs in a targeted region.  相似文献   

14.
15.
16.
Copy number variation is common in the human genome with many regions, overlapping thousands of genes, now known to be deleted or amplified. Aneuploidies and other forms of chromosomal imbalance have a wide range of adverse phenotypes and are a common cause of birth defects resulting in significant morbidity and mortality. “Normal” copy number variants (CNVs) embedded within the regions of chromosome imbalance may affect the clinical outcomes by altering the local copy number of important genes or regulatory regions: this could alleviate or exacerbate certain phenotypes. In this way CNVs may contribute to the clinical variability seen in many disorders caused by chromosomal abnormalities, such as the congenital heart defects (CHD) seen in ~40% of Down’s syndrome (DS) patients. Investigation of CNVs may therefore help to pinpoint critical genes or regulatory elements, elucidating the molecular mechanisms underlying these conditions, also shedding light on the aetiology of such phenotypes in people without major chromosome imbalances, and ultimately leading to their improved detection and treatment.  相似文献   

17.
Obesity is one of the most complex human diseases that are widely concerned and studied. More recently, copy number variations (CNVs) emerge as another important genetic marker to influence various human diseases. To elucidate the relationship between obesity and CNVs, this current study selected obesity-related candidate CNVs and analyzed their association with body mass index (BMI). Results showed that a CNV locus, 8q24.3, was significantly different (P = 0.0070) in CNV frequency between the obese and healthy controls in a young eastern Chinese cohort, while no statistical significance was observed in other seven candidate loci including well reported 10q11.22 and 16p11.2 loci. The association of 8q24.3 CNVs with BMI of the subjects only showed marginal significance, while the copy number (CN) of 5p15.33 had a significant correlation with the BMI of the subject. These results suggested that 8q24.3 CN gains was associated with obesity, and 5p15.33 might also contribute to obesity pathogenesis, highlighting the importance of these CNVs for obesity risks, as well as providing new evidence for CNVs in the pathology of common diseases.  相似文献   

18.
拷贝数变异是指基因组中发生大片段的DNA序列的拷贝数增加或者减少。根据现有的研究可知,拷贝数变异是多种人类疾病的成因,与其发生与发展机制密切相关。高通量测序技术的出现为拷贝数变异检测提供了技术支持,在人类疾病研究、临床诊疗等领域,高通量测序技术已经成为主流的拷贝数变异检测技术。虽然不断有新的基于高通量测序技术的算法和软件被人们开发出来,但是准确率仍然不理想。本文全面地综述基于高通量测序数据的拷贝数变异检测方法,包括基于reads深度的方法、基于双末端映射的方法、基于拆分read的方法、基于从头拼接的方法以及基于上述4种方法的组合方法,深入探讨了每类不同方法的原理,代表性的软件工具以及每类方法适用的数据以及优缺点等,并展望未来的发展方向。  相似文献   

19.

Background

Copy number variations (CNVs) confer significant effects on genetic innovation and phenotypic variation. Previous CNV studies in swine seldom focused on in-depth characterization of global CNVs.

Results

Using whole-genome assembly comparison (WGAC) and whole-genome shotgun sequence detection (WSSD) approaches by next generation sequencing (NGS), we probed formation signatures of both segmental duplications (SDs) and individualized CNVs in an integrated fashion, building the finest resolution CNV and SD maps of pigs so far. We obtained copy number estimates of all protein-coding genes with copy number variation carried by individuals, and further confirmed two genes with high copy numbers in Meishan pigs through an enlarged population. We determined genome-wide CNV hotspots, which were significantly enriched in SD regions, suggesting evolution of CNV hotspots may be affected by ancestral SDs. Through systematically enrichment analyses based on simulations and bioinformatics analyses, we revealed CNV-related genes undergo a different selective constraint from those CNV-unrelated regions, and CNVs may be associated with or affect pig health and production performance under recent selection.

Conclusions

Our studies lay out one way for characterization of CNVs in the pig genome, provide insight into the pig genome variation and prompt CNV mechanisms studies when using pigs as biomedical models for human diseases.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-593) contains supplementary material, which is available to authorized users.  相似文献   

20.
Array genomic hybridization (AGH) has recently been implemented as a diagnostic tool for the detection of submicroscopic copy number variants (CNVs) in patients with developmental disorders. However, there is no consensus regarding the choice of the platform, the minimal resolution needed and systematic interpretation of CNVs. We report our experience in the clinical diagnostic use of high resolution AGH up to 100 kb on 131 patients with chromosomal phenotypes but previously normal karyotype. We evaluated the usefulness in our clinics and laboratories by the detection rate of causal CNVs and CNVs of unknown clinical significance and to what extent their interpretation would challenge the systematic use of high-resolution arrays in clinical application. Prioritizing phenotype-genotype correlation in our interpretation strategy to criteria previously described, we identified 33 (25.2%) potentially pathogenic aberrations. 16 aberrations were confirmed pathogenic (16.4% syndromic, 8.5% non-syndromic patients); 9 were new and individual aberrations, 3 of them were pathogenic although inherited and one is as small as approx 200 kb. 13 of 16 further CNVs of unknown significance were classified likely benign, for 3 the significance remained unclear. High resolution array allows the detection of up to 12.2% of pathogenic aberrations in a diagnostic clinical setting. Although the majority of aberrations are larger, the detection of small causal aberrations may be relevant for family counseling. The number of remaining unclear CNVs is limited. Careful phenotype-genotype correlations of the individual CNVs and clinical features are challenging but remain a hallmark for CNV interpretation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号