首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Recent research has highlighted roles for non-coding RNA i7n the regulation of stress tolerance in bats. In this study, we propose that microRNA could also play an important role in neuronal maintenance during hibernation. To explore this possibility, RT-PCR was employed to investigate the expression of eleven microRNAs from the brain tissue of euthermic control and torpid bats. Results show that eight microRNAs (miR-21, -29b, -103, -107, -124a, -132, -183 and -501) increased (1.2–1.9 fold) in torpid bats, while the protein expression of Dicer, a microRNA processing enzyme, did not significantly change during torpor. Bioinformatic analysis of the differentially expressed microRNA suggests that these microRNAs are mainly involved in two processes: (1) focal adhesion and (2) axon guidance. To determine the extent of microRNA sequence conservation in the bat, we successfully identified bat microRNA from sequence alignments against known mouse (Mus musculus) microRNA. We successfully identified 206 conserved pre-microRNA sequences, leading to the identification of 344 conserved mature microRNA sequences. Sequence homology of the identified sequences was found to be 94.76 ± 3.95% and 98.87 ± 2.24% for both pre- and mature microRNAs, respectively. Results suggest that brain function related to the differentiation of neurons and adaptive neuroprotection may be under microRNA control during bat hibernation.  相似文献   

13.
14.
15.
Ramie fiber extracted from stem bark is one of the most important natural fibers. The root-lesion nematode (RLN) Pratylenchus coffeae is a major ramie pest and causes large fiber yield losses in China annually. The response mechanism of ramie to RLN infection is poorly understood. In this study, we identified genes that are potentially involved in the RLN-resistance in ramie using Illumina pair-end sequencing in two RLN-infected plants (Inf1 and Inf2) and two control plants (CO1 and CO2). Approximately 56.3, 51.7, 43.4, and 45.0 million sequencing reads were generated from the libraries of CO1, CO2, Inf1, and Inf2, respectively. De novo assembly for these 196 million reads yielded 50,486 unigenes with an average length of 853.3 bp. A total of 24,820 (49.2%) genes were annotated for their function. Comparison of gene expression levels between CO and Inf ramie revealed 777 differentially expressed genes (DEGs). The expression levels of 12 DEGs were further confirmed by real-time quantitative PCR (qRT-PCR). Pathway enrichment analysis showed that three pathways (phenylalanine metabolism, carotenoid biosynthesis, and phenylpropanoid biosynthesis) were strongly influenced by RLN infection. A series of candidate genes and pathways that may contribute to the defense response against RLN in ramie will be helpful for further improving resistance to RLN infection.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号