首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prefoldin (PFD) is a heterohexameric molecular chaperone that is found in eukaryotic cytosol and archaea. PFD is composed of α and β subunits and forms a “jellyfish-like” structure. PFD binds and stabilizes nascent polypeptide chains and transfers them to group II chaperonins for completion of their folding. Recently, the whole genome of Thermococcus kodakaraensis KOD1 was reported and shown to contain the genes of two α and two β subunits of PFD. The genome of Thermococcus strain KS-1 also possesses two sets of α (α1 and α2) and β subunits (β1 and β2) of PFD (TsPFD). However, the functions and roles of each of these PFD subunits have not been investigated in detail. Here, we report the crystal structure of the TsPFD β1 subunit at 1.9 Å resolution and its functional analysis. TsPFD β1 subunits form a tetramer with four coiled-coil tentacles resembling the jellyfish-like structure of heterohexameric PFD. The β hairpin linkers of β1 subunits assemble to form a β barrel “body” around a central fourfold axis. Size-exclusion chromatography and multi-angle light-scattering analyses show that the β1 subunits form a tetramer at pH 8.0 and a dimer of tetramers at pH 6.8. The tetrameric β1 subunits can protect against aggregation of relatively small proteins, insulin or lysozyme. The structural and biochemical analyses imply that PFD β1 subunits act as molecular chaperones in living cells of some archaea.  相似文献   

2.
Integrins are heterodimeric transmembrane (TM) receptors formed by noncovalent associations of α and β subunits. Each subunit contains a single α-helical TM domain. Inside-out activation of an integrin involves the separation of its cytoplasmic tails, leading to disruption of αβ TM packing. The leukocyte integrin αLβ2 is required for leukocyte adhesion, migration, proliferation, cytotoxic function, and antigen presentation. In this study, we show by mutagenesis experiments that the packing of αLβ2 TMs is consistent with that of the integrin αIIbβ3 TMs. However, molecular dynamics simulations of αLβ2 TMs in lipids predicted a polar interaction involving the side chains of αL Ser1071 and β2 Thr686 in the outer-membrane association clasp (OMC). This is supported by carbonyl vibrational shifts observed in isotope-labeled αLβ2 TM peptides that were incorporated into lipid bilayers. Molecular dynamics studies simulating the separation of αLβ2 tails showed the presence of polar interaction during the initial perturbation of the inner-membrane association clasp. When the TMs underwent further separation, the polar interaction was disrupted. OMC polar interaction is important in regulating the functions of β2 integrins because mutations that disrupt the OMC polar interaction generated constitutively activated αLβ2, αMβ2, and αXβ2 in 293T transfectants. We also show that the expression of mutant β2 Thr686Gly in β2-deficient T cells rescued cell adhesion to intercellular adhesion molecule 1, but the cells showed overt elongated morphologies in response to chemokine stromal-cell-derived factor 1α treatment as compared to wild-type β2-expressing cells. These two TM polar residues are totally conserved in other members of the β2 integrins in humans and across different species. Our results provide an example of the stabilizing effect of polar interactions within the low dielectric environment of the membrane interior and demonstrate its importance in the regulation of αLβ2 function.  相似文献   

3.
Prefoldin is a heterohexameric molecular chaperone complex that is found in the eukaryotic cytosol and also in archaea. It captures a nonnative protein and subsequently delivers it to a group II chaperonin for proper folding. Archaeal prefoldin is a heterocomplex containing two α subunits and four β subunits with the structure of a double β-barrel assembly, with six long coiled coils protruding from it like a jellyfish with six tentacles. We have studied the protein folding mechanism of group II chaperonin using those of Thermococcus sp. strain KS-1 (T. KS-1) because they exhibit high protein folding activity in vitro. We have also demonstrated functional cooperation between T. KS-1 chaperonins and prefoldin from Pyrococcus horikoshii OT3. Recent genome analysis has shown that Thermococcus kodakaraensis KOD1 contains two pairs of prefoldin subunit genes, correlating with the existence of two different chaperonin subunits. In this study, we characterized four different recombinant prefoldin complexes composed of two pairs of prefoldin subunits (α1, α2, β1, and β2) from T. KS-1. All of them (α1-β1, α2-β1, α1-β2, and α2-β2) exist as α2β4 heterohexamers and can protect several proteins from forming aggregates with different activities. We have also compared the collaborative activity between the prefoldin complexes and the cognate chaperonins. Prefoldin complexes containing the β1 subunit interacted with the chaperonins more strongly than those with the β2 subunit. The results suggest that Thermococcus spp. express different prefoldins for different substrates or conditions as chaperonins.  相似文献   

4.
We report here an analysis of the expression and function of the α chain of human VLA-4 in stable mouse L cell transfectants and the requirement for the β chain in these processes. L cells were transfected with human α4 cDNA or α4 and human β1 cDNA. Unexpectedly, human α4 cDNA, when transfected alone, could induce de novo surface expression of host β7 and increased expression of host β1. Induction of mouse β7 and β1 surface expression was not due to de novo gene activation, but instead represented α4/β intracellular subunit association and transport to the cell surface. Transfection with human β1 prevented surface expression of mouse β integrins. Whereas human α4 and human β1 subunits associated very tightly in anti-α4 immunoprecipitates, human α4 and mouse β subunits were only partially associated. Furthermore, binding of human/mouse chimeric receptors to recombinant VCAM, a major ligand for α4β7 and α4β1, was very poor, whereas human α4/human β1 receptors bound strongly to VCAM. One α4 transfectant, which exhibited a tight human α4/mouse β1 association, could be induced, but only after PMA activation, to bind strongly to VCAM. These results indicate that α4 subunits have specific affinity for β7 and β1 integrins and require β subunits for surface expression as well as high affinity ligand binding activity. Our results indicate that a tight association between the α4 and β subunit appears to be critical for ligand binding, consistent with a direct as well as regulatory role for the β subunit in ligand binding. Furthermore, these studies demonstrate that expression of foreign recombinant proteins can alter host cell protein expression resulting in de novo surface protein expression. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Proton-pumping nicotinamide nucleotide transhydrogenase from Escherichia coli contains an α and a β subunit of 54 and 49 kDa, respectively, and is made up of three domains. Domain I (dI) and III (dIII) are hydrophilic and contain the NAD(H)- and NADP(H)-binding sites, respectively, whereas the hydrophobic domain II (dII) contains 13 transmembrane α-helices and harbours the proton channel. Using a cysteine-free transhydrogenase, the organization of dII and helix-helix distances were investigated by the introduction of one or two cysteines in helix-helix loops on the periplasmic side. Mutants were subsequently cross-linked in the absence and presence of diamide and the bifunctional maleimide cross-linker o-PDM (6 Å), and visualized by SDS-PAGE.In the α2β2 tetramer, αβ cross-links were obtained with the αG476C-βS2C, αG476C-βT54C and αG476C-βS183C double mutants. Significant αα cross-links were obtained with the αG476C single mutant in the loop connecting helix 3 and 4, whereas ββ cross-links were obtained with the βS2C, βT54C and βS183C single mutants in the beginning of helix 6, the loop between helix 7 and 8 and the loop connecting helix 11 and 12, respectively. In a model based on 13 mutants, the interface between the α and β subunits in the dimer is lined along an axis formed by helices 3 and 4 from the α subunit and helices 6, 7 and 8 from the β subunit. In addition, helices 2 and 4 in the α subunit together with helices 6 and 12 in the β subunit interact with their counterparts in the α2β2 tetramer. Each β subunit in the α2β2 tetramer was concluded to contain a proton channel composed of the highly conserved helices 9, 10, 13 and 14.  相似文献   

6.
Integrins are heterodimeric cell-surface receptors with key functions in cell-cell and cell-matrix adhesion. Integrin α and β subunits are present throughout the metazoans, but it is unclear whether the subunits predate the origin of multicellular organisms. Several component domains have been detected in bacteria, one of which, a specific 7-bladed β-propeller domain, is a unique feature of the integrin α subunits. Here, we describe a structure-derived motif, which incorporates key features of each blade from the X-ray structures of human αIIbβ3 and αVβ3, includes elements of the FG-GAP/Cage and Ca(2+)-binding motifs, and is specific only for the metazoan integrin domains. Separately, we searched for the metazoan integrin type β-propeller domains among all available sequences from bacteria and unicellular eukaryotic organisms, which must incorporate seven repeats, corresponding to the seven blades of the β-propeller domain, and so that the newly found structure-derived motif would exist in every repeat. As the result, among 47 available genomes of unicellular eukaryotes we could not find a single instance of seven repeats with the motif. Several sequences contained three repeats, a predicted transmembrane segment, and a short cytoplasmic motif associated with some integrins, but otherwise differ from the metazoan integrin α subunits. Among the available bacterial sequences, we found five examples containing seven sequential metazoan integrin-specific motifs within the seven repeats. The motifs differ in having one Ca(2+)-binding site per repeat, whereas metazoan integrins have three or four sites. The bacterial sequences are more conserved in terms of motif conservation and loop length, suggesting that the structure is more regular and compact than those example structures from human integrins. Although the bacterial examples are not full-length integrins, the full-length metazoan-type 7-bladed β-propeller domains are present, and sometimes two tandem copies are found.  相似文献   

7.
Integrin is a cell surface protein that is composed of α and β heterodimer and mediates cell interaction with extracellular matrix or other cells including microbial pathogens. A full length cDNA sequence (2862 bp) of a β1 subunit integrin (βSe1) was cloned from the beet armyworm, Spodoptera exigua. Phylogenetic analysis showed that βSe1 was clustered with other insect β integrin subunits with the highest amino acid sequence identity (98.3%) to β1 of Spodoptera litura. Structural analysis of the deduced amino acid sequence indicated that βSe1 possessed all functional domains known in other insect β1 integrins. RT-PCR analysis showed that βSe1 was expressed in all developmental stages and all tested tissues of S. exigua. Its expression was further upregulated in hemocytes by injections of various microbes from quantitative RT-PCR analysis. Injection of double-stranded βSe1 RNA (dsRNAβSe1) into late instar S. exigua suppressed βSe1 expression and resulted in significant reduction in pupal weight. The dsRNAβSe1 injection significantly impaired hemocyte-spreading and nodule formation of S. exigua in response to bacterial challenge. Furthermore, oral ingestion of dsRNAβSe1 induced reduction of βSe1 expression in midgut and resulted in significant mortality of S. exigua during immature development. These results suggest that βSe1 plays crucial roles in performing cellular immune responses as well as larval development in S. exigua.  相似文献   

8.
Proper folding of the Na,K-ATPase β subunits followed by assembly with the α subunits is necessary for their export from the endoplasmic reticulum (ER). Here we examine roles of the ER lectin chaperone, calnexin, and non-lectin chaperone, BiP, in folding and quality control of the β(1) and β(2) subunits in Madin-Darby canine kidney cells. Short term prevention of glycan-calnexin interactions by castanospermine slightly increases ER retention of β(1), suggesting minor involvement of calnexin in subunit folding. However, both prolonged incubation with castanospermine and removal of N-glycosylation sites do not affect the α(1)-assembly or trafficking of β(1) but increase the amount of the β(1)-bound BiP, showing that BiP can compensate for calnexin in assisting β(1) folding. In contrast to β(1), prevention of either N-glycosylation or glycan-calnexin interactions abolishes the α(1)-assembly and export of β(2) from the ER despite increased β(2)-BiP binding. Mutations in the α(1)-interacting regions of β(1) and β(2) subunits impair α(1) assembly but do not affect folding of the β subunits tested by their sensitivity to trypsin. At the same time, these mutations increase the amount of β-bound BiP but not of β-bound calnexin and increase ER retention of both β-isoforms. BiP, therefore, prevents the ER export of folded but α(1)-unassembled β subunits. These α(1)-unassembled β subunits are degraded faster than α(1)-bound β subunits, preventing ER overload. In conclusion, folding of the β(1) and β(2) subunits is assisted predominantly by BiP and calnexin, respectively. Folded β(1) and β(2) either assemble with α(1) or bind BiP. The α(1)-bound β subunits traffic to the Golgi, whereas BiP-bound β subunits are retained and degraded in the ER.  相似文献   

9.
Integrins are a family of α/β heterodimeric adhesion metalloprotein receptors and their functions are highly dependent on and regulated by different divalent cations. Recently advanced studies have revolutionized our perception of integrin metal ion-binding sites and their specific functions. Ligand binding to integrins is bridged by a divalent cation bound at the MIDAS motif on top of either α I domain in I domain-containing integrins or β I domain in α I domain-less integrins. The MIDAS motif in β I domain is flanked by ADMIDAS and SyMBS, the other two crucial metal ion binding sites playing pivotal roles in the regulation of integrin affinity and bidirectional signaling across the plasma membrane. The β-propeller domain of α subunit contains three or four β-hairpin loop-like Ca2+-binding motifs that have essential roles in integrin biogenesis. The function of another Ca2+-binding motif located at the genu of α subunit remains elusive. Here, we provide an overview of the integrin metal ion-binding sites and discuss their roles in the regulation of integrin functions.  相似文献   

10.
The activation of α/β heterodimeric integrins is the result of highly coordinated rearrangements within both subunits. The molecular interactions between the two subunits, however, remain to be characterized. In this study, we use the integrin α(L)β(2) to investigate the functional role of the C-linker polypeptide that connects the C-terminal end of the inserted (I) domain with the β-propeller domain on the α subunit and is located at the interface with the βI domain of the β chain. We demonstrate that shortening of the C-linker by eight or more amino acids results in constitutively active α(L)β(2) in which the αI domain is no longer responsive to the regulation by the βI domain. Despite this intersubunit uncoupling, both I domains remain individually sensitive to intrasubunit conformational changes induced by allosteric modulators. Interestingly, the length and not the sequence of the C-linker appears to be critical for its functionality in α/β intersubunit communication. Using two monoclonal antibodies (R7.1 and CBR LFA-1/1) we further demonstrate that shortening of the C-linker results in the gradual loss of combinational epitopes that require both the αI and β-propeller domains for full reactivity. Taken together, our findings highlight the role of the C-linker as a spring-like element that allows relaxation of the αI domain in the resting state and controlled tension of the αI domain during activation, exerted by the β chain.  相似文献   

11.
《Life sciences》1995,57(18):1675-1681
Various heterotrimeric GTP-binding proteins (G proteins) are possible to have important functions in hematopoietic cells. However, there has been no information regarding their expression in magakaryoblasts and/or megakaryocytes. In the present study, protein contents of seven G protein α subunits (Gs α, Gi2 α, Gi3 α, Gz α, G11 α, Gq α and G12 α) and β subunit in a human megakaryoblastic leukemia cell line, MEG-01, were analyzed by immunoblotting. Immature MEG-01 cells expressed the α subunits of Gs, Gi2, Gi3, Gz, G11 and G12 at protein molecule level. During the 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced differentiation process, the contents of Gi2 α and Gi3 α increased, whereas the protein levels of Gz α, Gs α, Gil a and G12 α were observed to hardly change, β Subunit was also observed to be present in immature MEG-01 cells and to increase continuously throughout the differentiation process. For the expression of Gi2 α and β subunits, chronic TPA-treatment was required although Rac2, a low Mr GTP-binding protein, was expressed abundantly by only 30 min-TPA-treatment followed by 3 day-culture.  相似文献   

12.
To catalyze ion transport, the Na,K-ATPase must contain one α and one β subunit. When expressed by transfection in various expression systems, each of the four α subunit isoforms can assemble with each of the three β subunit isoforms and form an active enzyme, suggesting the absence of selective α-β isoform assembly. However, it is unknown whether in vivo conditions the α-β assembly is random or isoform-specific. The α(2)-β(2) complex was selectively immunoprecipitated by both anti-α(2) and anti-β(2) antibodies from extracts of mouse brain, which contains cells co-expressing multiple Na,K-ATPase isoforms. Neither α(1)-β(2) nor α(2)-β(1) complexes were detected in the immunoprecipitates. Furthermore, in MDCK cells co-expressing α(1), β(1), and β(2) isoforms, a greater fraction of the β(2) subunits was unassembled with α(1) as compared with that of the β(1) subunits, indicating preferential association of the α(1) isoform with the β(1) isoform. In addition, the α(1)-β(2) complex was less resistant to various detergents than the α(1)-β(1) complex isolated from MDCK cells or the α(2)-β(2) complex isolated from mouse brain. Therefore, the diversity of the α-β Na,K-ATPase heterodimers in vivo is determined not only by cell-specific co-expression of particular isoforms, but also by selective association of the α and β subunit isoforms.  相似文献   

13.
14.
Epithelial Na(+) channels (ENaCs) play an essential role in the regulation of body fluid homeostasis. Certain transition metals activate or inhibit the activity of ENaCs. In this study, we examined the effect of extracellular Cu(2+) on human ENaC expressed in Xenopus oocytes and investigated the structural basis for its effects. External Cu(2+) inhibited human αβγ ENaC with an estimated IC(50) of 0.3 μM. The slow time course and a lack of change in the current-voltage relationship were consistent with an allosteric (non pore-plugging) inhibition of human ENaC by Cu(2+). Experiments with mixed human and mouse ENaC subunits suggested that both the α and β subunits were primarily responsible for the inhibitory effect of Cu(2+) on human ENaC. Lowering bath solution pH diminished the inhibition by Cu(2+). Mutations of two α, two β, and two γ His residues within extracellular domains significantly reduced the inhibition of human ENaC by Cu(2+). We identified a pair of residues as potential Cu(2+)-binding sites at the subunit interface between thumb subdomain of αhENaC and palm subdomain of βhENaC, suggesting a counterclockwise arrangement of α, β, and γ ENaC subunits in a trimeric channel complex when viewed from above. We conclude that extracellular Cu(2+) is a potent inhibitor of human ENaC and binds to multiple sites within the extracellular domains including a subunit interface.  相似文献   

15.
The Drosophila position-specific (PS) integrins are members of the integrin family of cell surface receptors and are thought to be receptors for extracellular matrix components. Each PS integrin consists of an α subunit, αPS1 or αPS2, and a βPS subunit. Mutations in the βPS subunit and the αPS2 subunit have been characterised and reveal that the PS integrins have an essential role in the adhesion of different cell layers to each other. The PS integrins are especially required for the function of the cell-matrix-cell junctions, where the muscles attach to the epidermis and where one surface of the developing wing adheres to the other. These junctions are similar to vertebrate focal adhesions and hemidesmosomes, which also contain integrins. Integrin-mediated cell to cell adhesion via the extracellular matrix provides a way for tissues to adhere to each other without intermingling of their cells.  相似文献   

16.
Drosophila melanogastercasein kinase II (DmCKII) is composed of catalytic α and regulatory β subunits associated as an α2β2heterotetramer. Using the two-hybrid system, we have screened aDrosophilaembryo cDNA library for proteins that interact with DmCKII α. One of the cDNAs encodes a novel β-like polypeptide, which we designate β′.In situhybridization localizes the corresponding gene to 56F1-2, a site distinct from that of both the β gene and theStellatefamily of β-like sequences. The predicted sequence of β′ is more closely related to the β subunit ofDrosophilaand other metazoans than to the Stellate family of proteins, suggesting that it is a second regulatory subunit.In vitroreconstitution studies show that a GST-β′ fusion protein associates with the α subunit to generate a tetrameric complex with regulatory properties similar to those of the native α2β2holoenzyme. The data are consistent with the proposed role of the β′ subunit as an integral component of the holoenzyme.  相似文献   

17.
We examined over 50 mutations in the Drosophila βPS integrin subunit that alter integrin function in situ for their ability to bind a soluble monovalent ligand, TWOW-1. Surprisingly, very few of the mutations, which were selected for conditional lethality in the fly, reduce the ligand binding ability of the integrin. The most prevalent class of mutations activates the integrin heterodimer. These findings emphasize the importance of integrin affinity regulation and point out how molecular interactions throughout the integrin molecule are important in keeping the integrin in a low affinity state. Mutations strongly support the controversial deadbolt hypothesis, where the CD loop in the β tail domain acts to restrain the I domain in the inactive, bent conformation. Site-directed mutations in the cytoplasmic domains of βPS and αPS2C reveal different effects on ligand binding from those observed for αIIbβ3 integrins and identify for the first time a cytoplasmic cysteine residue, conserved in three human integrins, as being important in affinity regulation. In the fly, we find that genetic interactions of the βPS mutations with reduction in talin function are consistent with the integrin affinity differences measured in cells. Additionally, these genetic interactions report on increased and decreased integrin functions that do not result in affinity changes in the PS2C integrin measured in cultured cells.  相似文献   

18.
When lepidopteran larvae are infected by a large quantity of pathogens or parasitized by nonadaptive parasitoids, hemocytes in the hemocoel will encapsulate these foreign invaders. Cellular encapsulation requires hemocytes, particularly plasmatocytes, to change their states from nonadhesive, spherical cells into adhesive, spreading cells. However, it is unclear how the changes of plasmatocytes are regulated. Here we report that the integrin β1 subunit from hemocytes of Ostrinia furnacalis (Ofint β1) plays an important role in regulating the spreading of plasmatocytes. The full length cDNA sequence (4477 bp) of Ofint β1 was cloned from hemocytes. Phylogenetic analysis showed that Ofint β1 belonged to the integrin βPS family of Drosophila melanogaster with highest sequence identity (78.7%) to the β-integrin of Pseudoplusia includens. Structural analysis of the deduced amino acid sequence indicated that Ofint β1 had similar functional domains to known β-integrins in other lepidopteran insects. RT-PCR, Northern blotting, Western blotting and immunohistochemical analyses showed that OfINT β1 was expressed mainly in hemocytes, especially in plasmatocytes, and weakly in fat body, Malpighian tubes and epidermis. After hemocytes had spread onto slides, fewer antibodies to OfINT β1 bound to the surface of plasmatocytes. Furthermore, anti-OfINT β1 serum clearly inhibited the spreading of plasmatocytes. Together these results indicate that OfINT β1 may play an important role in regulating the spreading of plasmatocytes.  相似文献   

19.
20.
Prefoldin is a co-chaperone that captures an unfolded protein substrate and transfers it to the group II chaperonin for completion of protein folding. Group II chaperonin of a hyperthermophilic archaeon, Thermococcus strain KS-1, interacts and cooperates with archaeal prefoldins. Although the interaction sites within chaperonin and prefoldin have been analyzed, the binding mode between jellyfish-like hexameric prefoldin and the double octameric ring group II chaperonin remains unclear. As prefoldin binds the chaperonin β subunit more strongly than the α subunit, we analyzed the binding mode between prefoldin and chaperonin in the context of Thermococcus group II chaperonin complexes of various subunit compositions and arrangements. The oligomers exhibited various affinities for prefoldins according to the number and order of subunits. Binding affinity increased with the number of Cpnβ subunits. Interestingly, chaperonin complexes containing two β subunits adjacently exhibited stronger affinities than other chaperonin complexes containing the same number of β subunits. The result suggests that all four β tentacles of prefoldin interact with the helical protrusions of CPN in the PFD–CPN complex as the previously proposed model that two adjacent PFD β subunits seem to interact with two CPN adjacent subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号