首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Animal ionotropic glutamate receptors (iGluRs) function as Ca2 + ion channels during excitatory neurotransmission in nerve cells. Here, a glutamate receptor-like gene (GLR) was identified and characterized from a plant — Echinochloa crus-galli. The GLR gene was designated EcGLR1 with GenBank no: JX518597. It has a 2793 bp open reading frame predicted to encode a 101.7 kDa protein. Sequence alignment showed that EcGLR1 is a GLR homologue. Its expression in response to quinclorac treatment was assessed by real-time PCR in near-isogenic lines of quinclorac-resistant (R) and susceptible (S) biotypes of E. crus-galli. The expression of EcGLR1 in the seedling leaf and root at least increased 5 times in the S plants and 22 times in the R plants after exposure to quinclorac. In the adult plant leaves, roots and stems, its expression increased 11–14 times in the S plants and 23–25 times in the R plants after quinclorac stimulation. In the seed, its expression was 4 times less in the S plants than that in the R plants, but after treatment, the levels all increased by about 24 times in the two biotypes. EcGLR1 expression was 1–4 times greater in the R plants than in that in the S plants, and after treatment by quinclorac, the difference increased to a ratio of 4 to 9. Its expression was higher in all tissues tested of R biotypes than in that of S plants before or after quinclorac treatment. The results of this study provide basic information for the further research of function of the EcGLR1 in resistance to quinclorac in E. crus-galli.  相似文献   

5.
The partial CaDSR6 (Capsicum annuum Drought Stress Responsive 6) cDNA was previously identified as a drought-induced gene in hot pepper root tissues. However, the cellular role of CaDSR6 with regard to drought stress tolerance was unknown. In this report, full-length CaDSR6 cDNA was isolated. The deduced CaDSR6 protein was composed of 234 amino acids and contained an approximately 30 amino acid-long Asp-rich domain in its central region. This Asp-rich domain was highly conserved in all plant DSR6 homologs identified and shared a sequence identity with the N-terminal regions of yeast p23fyp and human hTCTP, which contain Rab protein binding sites. Transgenic Arabidopsis plants overexpressing CaDSR6 (35S:CaDSR6-sGFP) were tolerant to high salinity, as identified by more vigorous root growth and higher levels of total chlorophyll than wild type plants. CaDSR6-overexpressors were also more tolerant to drought stress compared to wild type plants. The 35S:CaDSR6-sGFP leaves retained their water content and chlorophyll more efficiently than wild type leaves in response to dehydration stress. The expression of drought-induced marker genes, such as RD20, RD22, RD26, RD29A, RD29B, RAB18, KIN2, ABF3, and ABI5, was markedly increased in CaDSR6-overexpressing plants relative to wild type plants under both normal and drought conditions. These results suggest that overexpression of CaDSR6 is associated with increased levels of stress-induced genes, which, in turn, conferred a drought tolerant phenotype in transgenic Arabidopsis plants. Overall, our data suggest that CaDSR6 plays a positive role in the response to drought and salt stresses.  相似文献   

6.
7.
The leaves of stevia [Stevia rebaudiana (Bertoni)] are a rich source of steviol glycosides that are used as non-calorific sweetener in many countries around the world. Steviol moiety of steviol glycosides is synthesized via plastidial 2C-methyl-D-erythritol 4-phosphate pathway, where (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) is the key enzyme. HDR catalyzes the simultaneous conversion of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate into five carbon isoprenoid units, isopentenyl diphosphate and dimethylallyl diphosphate. Stevia HDR (SrHDR) successfully rescued HDR lethal mutant strain MG1655 ara<>ispH upon genetic complementation, suggesting SrHDR to encode a functional protein. The gene exhibited diurnal variation in expression. To identify the possible regulatory elements, upstream region of the gene was cloned and putative cis-acting elements were detected by in silico analysis. Electrophoretic mobility shift assay, using a putative light responsive element GATA showed the binding of nuclear proteins (NP) isolated from leaves during light period of the day, but not with the NP from leaves during the dark period. Data suggested the involvement of GATA box in light mediated gene regulation of SrHDR in stevia.  相似文献   

8.
9.
10.
11.
12.
We here report characterization of a grape (Vitis vinifera) acyl-CoA-binding protein (VvACBP). Expression of VvACBP was detected in grape leaves exposed to tunicamycin-induced endoplasmic reticulum (ER) stress as well as cold and heat shock treatments. In tendrils and peduncles, however, high-temperature treatment induced BiP (luminal binding protein) expression, a marker of ER stress in berry skin, but not VvACBP expression. We hypothesize that VvACBP may be sorted to the periphery of plant cells. Transgenic Arabidopsis plants, expressing VvACBP, exhibited slowed-down floral transition. The gene expression of proteins related to the photoperiodic pathway, CONSTANS, FLOWERING LOCUS T (FT), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), was down-regulated in transgenic seedlings. These results underscore the possibility that VvACBP may affect the regulation of floral transition in Arabidopsis by suppressing the photoperiodic pathway. The transgenic Arabidopsis plants also exhibited morphological changes such as thicker inflorescences and rosette leaves. In addition, the rosette leaves of the transgenic plants had higher anthocyanin, total phenol, and chlorophyll contents than those of the control plants. Finally, the transgenic plants showed disease resistance to Pseudomonas syringae and Colletotrichum higginsianum, suggesting that VvACBP may also enhance disease resistance in grapevine.  相似文献   

13.
14.
15.
16.
Physiological studies on aging in perennials are mainly focused either on the primary metabolism or the hormonal regulation of the process. However, to our knowledge, the involvement of the secondary metabolism in this process has not yet been explored. Cistus clusii, a Mediterranean sclerophyllous evergreen bush, shows considerable amounts of flavan-3-ols in leaves. In the present study, we aimed at determining the impact of environmental conditions and plant aging in the flavan-3-ol content in C. clusii plants grown in field conditions, which included summer drought and recovery periods. Six-year-old plants suffered more from photo-oxidative stress, especially during excess light periods, and showed lower maximum photosynthetic rates than 1-year-old plants. C. clusii leaves accumulated (−)-epigallocatechin gallate in early summer, in a strong positive correlation with both the photon flux density and the photoperiod, but not with the plant water status. Moreover, C. clusii plants accumulated proanthocyanidins (polymeric flavan-3-ols) in leaves during summer. Older plants showed higher levels of proanthocyanidins and (−)-epicatechin, but only during late spring and summer. From the result of the present study, we conclude that excess light enhances flavan-3-ol content in C. clusii, a process enhanced as plants age due to increased excess light stress.  相似文献   

17.
18.
19.
Brachypodium distachyon (purple false brome) is a herbaceous species belonging to the grass subfamily Pooideae, which also includes major crops like wheat, barley, oat and rye. The species has been established as experimental model organism for understanding and improving cereal crops and temperate grasses. The complete genome of Bd21, the community standard line of B. distachyon, has been sequenced and protocols for Agrobacterium-mediated transformation have been published. Further improvements to the experimental platform including better evaluation systems for transgenic plants are still needed. Here we describe the growth conditions for Bd21 plants yielding highly responsive immature embryos that can generate embryogenic calli for transformation. A prolonged 20-h photoperiod produced seeds with superior immature embryos. In addition, osmotic treatment of embryogenic calli enhanced the efficiency of transfection by particle bombardment. We generated transgenic plants expressing Arabidopsis thaliana galactinol synthase 2 (AtGolS2) in these experiments. AtGolS2-expressing transgenics displayed significantly improved drought tolerance, increasing with increased expression of AtGolS2. These results demonstrate that AtGolS2 can confer drought tolerance to monocots and confirm that Brachypodium is a useful model to further explore ways to understand and improve major monocot crop species.  相似文献   

20.
Arabidopsis thaliana APETALA3 (AP3) and Antirrhinum majus DEFICIENS (DEF) MADS box genes are required to specify petal and stamen identity. AP3 and DEF are members of the euAP3 lineage, which arose by gene duplication coincident with radiation of the core eudicots. In order to investigate the molecular mechanisms underlying organ development in early diverging clades of core eudicots, we isolated and identified an AP3 homolog, FaesAP3, from Fagopyrum esculentum (buckwheat, Polygonaceae), a multi-food-use pseudocereal with healing benefits. Protein sequence alignment and phylogenetic analyses revealed that FaesAP3 grouped into the euAP3 lineage. Expression analysis showed that FaesAP3 was transcribed only in developing stamens, and differed from AP3 and DEF, which expressed in developing petals and stamens. Moreover, ectopic expression of FaesAP3 rescued stamen development without complementation of petal development in an Arabidopsis ap3 mutant. Our results suggest that FaesAP3 is involved in the development of stamens in buckwheat. These results also suggest that FaesAP3 holds some potential for biotechnical engineering to create a male sterile line of F. esculentum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号