首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
2.
SQ Liu  RL Mayden  JB Zhang  D Yu  QY Tang  X Deng  HZ Liu 《Gene》2012,508(1):60-72
The superfamily Cobitoidea of the order Cypriniformes is a diverse group of fishes, inhabiting freshwater ecosystems across Eurasia and North Africa. The phylogenetic relationships of this well-corroborated natural group and diverse clade are critical to not only informing scientific communities of the phylogeny of the order Cypriniformes, the world's largest freshwater fish order, but are key to every area of comparative biology examining the evolution of traits, functional structures, and breeding behaviors to their biogeographic histories, speciation, anagenetic divergence, and divergence time estimates. In the present study, two mitochondrial gene sequences (COI, ND4+5) and four single-copy nuclear gene segments (RH1, RAG1, EGR2B, IRBP) were used to infer the phylogenetic relationships of the Cobitoidea as reconstructed from maximum likelihood (ML) and partitioned Bayesian Analysis (BA). Analyses of the combined mitochondrial/nuclear gene datasets revealed five strongly supported monophyletic Cobitoidea families and their sister-group relationships: Botiidae+(Vaillantellidae+(Cobitidae+(Nemacheilidae+Balitoridae))). These recovered relationships are in agreement with previous systematic studies on the order Cypriniformes and/or those focusing on the superfamily Cobitoidea. Using these relationships, our analyses revealed pattern lineage- or ecological-group-specific evolution of these genes for the Cobitoidea. These observations and results corroborate the hypothesis that these group-specific-ancestral ecological characters have contributed in the diversification and/or adaptations within these groups. Positive selections were detected in RH1 of nemacheilids and in RAG1 of nemacheilids and genus Vaillantella, which indicated that evolution of RH1 (related to eye's optic sense) and RAG1 (related to immunity) genes appeared to be important for the diversification of these groups. The balitorid lineage (those species inhabiting fast-flowing riverine habitats) had, as compared with other cobitoid lineages, significantly different dN/dS, dN and dS values for ND4 and IRBP genes. These significant differences are usually indicative of weaker selection pressure, and lineage-specific evolution on genes along the balitorid lineage. Furthermore, within Cobitoidea, excluding balitorids, species living in subtropics had significantly higher dN/dS values in RAG1 and IRBP genes than those living in temperate and tropical zones. Among tropical cobitoids, genes COI, ND5, EGR2B, IRBP and RH1, had a significantly higher mean dS value than those species in subtropical and temperate groups. These findings suggest that the evolution of these genes could also be ecological-group-specific and may have played an important role in the adaptive evolution and diversification of these groups. Thus, we hypothesize that the genes included in the present study were actively involved in lineage- and/or ecological-group-specific evolutionary processes of the highly diverse Cobitoidea. These two evolutionary patterns, both subject to further testing, are hypothesized as integral in the diversification with this major clade of the world's most diverse group of freshwater fishes.  相似文献   

3.
LTRs are sequence elements in retroviruses and retrotransposons which are difficult to align due to their variability. One way of handling such cases is to use Hidden Markov Models (HMMs). In this work HMMs of LTRs were constructed for three groups of orthoretroviruses: the betaretroviruslike human MMTV-like (HML) endogenous retroviruses, the lentiviruses, including HIV, and gammaretroviruslike human endogenous retroviruses (HERVs). The HMM-generated LTR alignments and the phylogenetic trees constructed from them were compared with trees based on alignments of the pol gene at the nucleic acid level. The majority of branches in the LTR and pol based trees had the same order for the three retroviral genera, showing that HMM methods are successful in aligning and constructing phylogenies of LTRs. The HML LTR tree deviated somewhat from the pol tree for the groups HML3, HML7 and HML6. Among the gammaretroviruslike proviruses, the exogenous Mouse Leukemia Virus (MLV) was highly related to HERV-T in the pol based tree, but not in the LTR based tree. Aside from these differences, the similarity between the trees indicates that LTRs and pol coevolved in a largely monophyletic way.  相似文献   

4.
Temmincki's ground pangolin is primarily a nocturnal mammal belonging to the order Pholidota. The body is covered in hard overlapping scales and these animals find refuge in burrows, feeding only on termites and ants. In this study, the whole mtDNA of Temmincki's ground pangolin was sequenced and the phylogenetic position of Pholidota determined within Eutheria, using whole mtDNA sequences from various representative species. The results indicate that the whole mtDNA of Temmincki's ground pangolin is 16,559 bp long and shared some similarities with the whole mtDNA of the back-bellied tree pangolin and the Chinese pangolin. Phylogenetic analysis indicate that the order Pholidota is closely related and share a recent common ancestor with the order Carnivora rather than with the ant/insect eating order Xenarthra and the group Afrotheria. A time measured phylogeny of Pholidota estimated a split from Carnivora at around 87 mya, followed by a split of the African pangolins from their Asian counterparts such as the Chinese pangolin at around 47 mya. This suggests a Laurasian origin and convergent evolution of the Pholidota with respect to Xenarthra and Afrotheria.  相似文献   

5.
HBNU/LSRC/F3, a Newcastle disease virus (NDV) strain stored in our lab, exhibited an anti-tumor ability in our previous studies. Nonetheless, very little is known about its genome sequence, which is vital for further study. Here, the complete HBNU/LSRC/F3 genome was fully sequenced and compared with other NDV sequences. Its genome contained 15,192 nucleotides (nt) consisting of two termini and six genes in the following order: 3′-Le-NP-P-M-F-HN-L-Tr-5′. Phylogenetic analysis indicated that this NDV strain belonged to the Class II genotype IX group. A multibasic amino acid (aa) sequence was found at the cleavage site (112RRQRR↓F117) within the fusion (F) protein, and a 6 nt insertion was present in the 5′ non-coding region of the NP gene. The whole genome sequence was highly similar to other genotype IX NDV genomes reported in China. Overall, this study provides insight into the sequence characteristics of genotype IX NDVs, which will be useful for subsequent investigations.  相似文献   

6.
7.
We sequenced mitogenomes of five skippers (family Hesperiidae, Lepidoptera) to obtain further insight into the characteristics of butterfly mitogenomes and performed phylogenetic reconstruction using all available gene sequences (PCGs, rRNAs, and tRNAs) from 85 species (20 families in eight superfamilies). The general genomic features found in the butterflies also were found in the five skippers: a high A + T composition (79.3%–80.9%), dominant usage of TAA stop codon, similar skewness pattern in both strands, consistently length intergenic spacer sequence between tRNAGln and ND2 (64–87 bp), conserved ATACTAA motif between tRNASer (UCN) and ND1, and characteristic features of the A + T-rich region (the ATAGA motif, varying length of poly-T stretch, and poly-A stretch). The start codon for COI was CGA in four skippers as typical, but Lobocla bifasciatus evidently possessed canonical ATG as start codon. All species had the ancestral arrangement tRNAAsn/tRNASer (AGN), instead of the rearrangement tRNASer (AGN)/tRNAAsn, found in another skipper species (Erynnis). Phylogenetic analyses using all available genes (PCGs, rRNAS, and tRNAs) yielded the consensus superfamilial relationships ((((((Bombycoidea + Noctuoidea + Geometroidea) + Pyraloidea) + Papilionoidea) + Tortricoidea) + Yponomeutoidea) + Hepialoidea), confirming the validity of Macroheterocera (Bombycoidea, Noctuoidea, and Geometroidea in this study) and its sister relationship to Pyraloidea. Within Rhopalocera (butterflies and skippers) the familial relationships (Papilionidae + (Hesperiidae + (Pieridae + ((Lycaenidae + Riodinidae) + Nymphalidae)))) were strongly supported in all analyses (0.98–1 by BI and 96–100 by ML methods), rendering invalid the superfamily status for Hesperioidea. On the other hand, current mitogenome-based phylogeny did not find consistent superfamilial relationships among Noctuoidea, Geometroidea, and Bombycoidea and the familial relationships within Bombycoidea between analyses, requiring further taxon sampling in future studies.  相似文献   

8.
The proliferation of retrotransposons within a genome can contribute to increased size and affect the function of eukaryotic genes. BEL/Pao-like long-terminal repeat (LTR) retrotransposons were annotated from the highly adaptable insect species Diabrotica virgifera virgifera, the Western corn rootworm, using survey sequences from bacterial artificial chromosome (BAC) inserts and contigs derived from a low coverage next-generation genome sequence assembly. Eleven unique D. v. virgifera BEL elements were identified that contained full-length gagpol coding sequences, whereas 88 different partial coding regions were characterized from partially assembled elements. Estimated genome copy number for full and partial BEL-like elements ranged from ~ 8 to 1582 among individual contigs using a normalized depth of coverage (DOC) among Illumina HiSeq reads (total genome copy number ~ 8821). BEL element copy number was correlated among different D. v. virgifera populations (R2 = 0.9846), but individual element numbers varied ≤ 1.68-fold and the total number varied by ~ 527 copies. These data indicate that BEL element proliferation likely contributed to a large genome size, and suggest that differences in copy number are a source of genetic variability among D. v. virgifera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号