首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
研究通过cDNA末端快速扩增法(RACE)克隆得到团头鲂生长抑制素(MSTN)基因的cDNA全长并分析了MSTN基因在团头鲂胚胎、成鱼组织中表达以及MSTN基因在胚胎中过表达情况。结果表明团头鲂MSTN基因的cDNA全长为2187 bp, ORF(开放阅读框)大小为1128 bp, 编码376个氨基酸。组织逆转录PCR (RT-PCR)结果显示, MSTN基因在肌肉、脑和精巢组织中大量表达, 肝脏、脾脏和卵巢组织中的少量表达, 肠、腮、心、眼和肾组织中的微量表达。胚胎逆转录PCR (RT-PCR)结果显示, 在0—44 hpf胚胎发育阶段, MSTN基因表达量较低; 而在48—52 hpf胚胎发育阶段, MSTN基因表达量逐渐升高。整胚原位杂交(WISH)结果显示, 胚胎发育的16 hpf时期MSTN基因主要在脊索中表达, 胚胎发育的28 hpf和55 hpf时期MSTN基因在脑中表达。MSTN基因过表达结果显示, 胚胎在体节发生期出现前-后轴拉长, 背-腹轴变短; 脊索发生扭曲, 强烈抑制体节发育而导致不分化等现象。研究为后续团头鲂MSTN基因的功能研究及团头鲂分子育种提供相关参考依据。  相似文献   

5.
6.
7.
The Akirin2 gene is a nuclear factor and is considered as a potential functional candidate gene for meat quality. To better understand the structures and functions of Akirin2 gene, the cDNA of the Tianfu goat Akirin2 gene was cloned. Sequence analysis showed that the Tianfu goat Akirin2 cDNA full coding sequence (CDS) contains 579 bp nucleotides that encode 192 amino acids. A phylogenic tree of the Akirin2 protein sequence from the Tianfu goat and other species revealed that the Tianfu goat Akirin2 was closely related with cattle and sheep Akirin2. RT-qPCR analysis showed that Akirin2 was expressed in the myocardium, liver, spleen, lung, kidney, leg muscle, abdominal muscle and the longissimus dorsi muscle. Especially, high expression levels of Akirin2 were detected in the spleen, lung, and kidney whereas lower expression levels were seen in the liver, myocardium, leg muscle, abdominal muscle and longissimus dorsi muscle. Temporal mRNA expression showed that Akirin2 expression levels in the longissimus dorsi muscle, first increased then decreased from day 1 to month 12. Western blotting results showed that the Akirin2 protein was only detected in the lung and three skeletal muscle tissues.  相似文献   

8.
Myostatin (MSTN) is a member of the transforming growth factor-β (TGF-β) superfamily that functions as a negative regulator of skeletal muscle development and growth in mammals. However, few reports are available about the structure and function of MSTN in teleost. Here, the MSTN gene was cloned from sea perch (Lateolabrax japonicus) by homology cloning and genomic walking. In the 4873-bp genomic sequence, three exons, two introns, and 5′ and 3′ flanking sequences were identified. The sea perch MSTN gene encodes a 374-amino acid protein, including a signal peptide, conserved cysteine residues, and a RXXR proteolytic cleavage domain. Expression analysis of MSTN revealed that MSTN was highly expressed in eyes, brain, and muscle; intermediately in intestine; and weakly in gill, spleen, liver, and heart. It was demonstrated that MSTN mRNA was highly expressed in embryonic stem cell line (LJES1), but it was undetectable in several types of somatic cell lines from sea perch, including fibroblast-like cell, epithelioid cell, and lymphocyte-like cell. Further, it was demonstrated that the 5′ flanking region of the MSTN gene can drive the expression of green fluorescent protein (GFP) reporter gene in LJES1 cells and transgenic zebrafish (Danio rerio). This is the first report on the expression profile of MSTN gene in various types of cell cultures.  相似文献   

9.
The distribution of insulin-like growth factor-I (IGF-I) and myostatin (MSTN) was investigated in sea bass (Dicentrarchus labrax) by real-time polymerase chain reaction (PCR), in situ hybridization (ISH) and immunohistochemistry. Real-time PCR indicated that IGF-I mRNA increased from the second day post-hatching and that this trend became significant from day 4. ISH confirmed a strong IGF-I mRNA expression from the first week post-hatching, with the most abundant expression being detected in the liver of larvae and adults. Real-time PCR also showed that the level of MSTN mRNA increased significantly from day 25. The expression of MSTN mRNA was higher in muscle and almost absent in other anatomical regions in both larvae and adults. Interestingly, the lateral muscle showed a quantitative differential expression of IGF-I and MSTN mRNAs in red and white muscle, depending on the developmental stage examined. IGF-I immunoreactivity was detected in developing intestine at hatching and in skeletal muscle, skin and yolk sac. MSTN immunostaining was evident in several tissues and organs in both larvae and adults. Both IGF-I and MSTN proteins were detected in the liver from day 4 post-hatching and, subsequently, in the kidney and heart muscle from day 10. Our results suggest, on the basis of a combined methodological approach, that IGF-I and MSTN are involved in the regulation of somatic growth in the sea bass. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This research was supported by grants from the Italian Ministero dell’Università e della Ricerca Scientifica e Tecnologica (MIUR) and by the University of Padua (Progetto di Ateneo).  相似文献   

10.
11.
鲤鱼肌肉生长抑制素基因(MSTN)的克隆及其组织表达特征   总被引:5,自引:0,他引:5  
肌肉生长抑制素(Myostatin,MSTN)是动物肌肉发育和生长过程中的负调控因子,对MSTN的研究将有助于促进动物生产。鲤鱼是我国的主要淡水养殖对象之一。因此,我们采用RT-PCR方法克隆了鲤鱼MSTN cDNA(No.EF551058)的部分序列,长度为921bp,编码306个氨基酸残基。鲤鱼MSTN具有MSTN的共同特征,有蛋白酶水解位点RIRR和9个保守的半胱氨酸残基。多重序列比较发现其与斑马鱼GDF8有极近的亲缘关系,96.7%的氨基酸序列同源。不同组织的RT-PCR分析发现鲤鱼MSTN主要在肌肉和脑部表达,而其他所检测组织未见表达。鲤鱼MSTN不仅在肌肉生长发育中发挥作用,可能在神经系统发育中也有其作用。  相似文献   

12.
肌肉生长抑制素(myostatin,MSTN)基因主要在骨骼肌中表达,参与调控骨骼肌的生长发育。MSTN基因在不同物种中具有极强的进化保守性,同时还具有较多的突变多态性。在牛的不同品种中,存在不同位点的有义突变,突变型牛均表现为骨骼肌发达,呈现双肌表型,生长速度与产肉率显著提高。同时,该基因突变也引起显著的生理性遗传效应。对国内外肉牛的MSTN基因突变类型、突变后遗传效应及在肉牛育种应用等方面作了重点阐述,以期为我国地方品种肉牛改良和选育研究提供参考。  相似文献   

13.
Secreted frizzled-related protein 3 (sFRP3), encoded by the gene FRZB, is a member of the sFRP family with important roles in inhibition of the Wnt signalling pathway through competitive binding of the Wnt receptor. Here, we investigated pig FRZB as a candidate gene for growth traits and identified three polymorphic sites, an insertion (A-532B) and two SNPs (G636A and C650T) in its 5′-UTR. The genotype distributions of G636A and C650T were significantly different among mini-type indigenous (Diannan Small-ear and Tibetan), normal indigenous (Laiwu and Huai), and introduced (Large Yorkshire and Landrace) breeds. In semi-quantitative PCR expression analysis, expression of FRZB mRNA was abundant in tissues of hypophysis, longissimus dorsi muscle, and adipose tissues, and low in the heart, hypothalamus, and brain. Quantitative determination of mRNA level and protein expression analysis were corresponding. The results demonstrated that FRZB gene expression in longissimus dorsi muscle and liver tissue was significantly higher in Diannan Small-ear and Tibetan pigs than in the Large Yorkshire breed (P < 0.05); however, in back fat tissue, the expression was significantly higher in Diannan Small-ear pig than in Tibetan or Large Yorkshire breeds (P < 0.05). Given the known growth and fat characteristics of the breeds, these results indicate that FRZB expression has a negative association with muscle growth and a positive association with fat deposition. In conclusion, FRZB may be a major candidate gene for growth traits in pigs.  相似文献   

14.
15.
16.
17.
肌肉生成抑制素(myostatin, MSTN)在动物机体骨骼肌的增殖、分化和生长中起着重要的负调控作用。MSTN基因的过表达会阻碍骨骼肌增殖分化及生长发育,而缺失或表达降低则会导致肌肉肥大,形成双肌现象(double muscle phenomenon, DMP)。MSTN能作用于多个基因及结合多种细胞因子广泛参与生理生化、物质代谢、病理调控等过程,在动物机体生长发育过程中扮演着重要的角色。本文将从MSTN基因的历史渊源、基因定位、时空表达特性、部分相关作用机制等方面进行论述,旨在对MSTN调控动物骨骼肌生长部分机制作梳理,以期为后期研究提供理论依据。  相似文献   

18.
Soybean [Glycine max (L.) Merril], one of the most important crop species in the world, is very susceptible to abiotic and biotic stress. Soybean plants have developed a variety of molecular mechanisms that help them survive stressful conditions. Hybrid proline-rich proteins (HyPRPs) constitute a family of cell-wall proteins with a variable N-terminal domain and conserved C-terminal domain that is phylogenetically related to non-specific lipid transfer proteins. Members of the HyPRP family are involved in basic cellular processes and their expression and activity are modulated by environmental factors. In this study, microarray analysis and real time RT-qPCR were used to identify putative HyPRP genes in the soybean genome and to assess their expression in different plant tissues. Some of the genes were also analyzed by time-course real time RT-qPCR in response to infection by Phakopsora pachyrhizi, the causal agent of Asian soybean rust disease. Our findings indicate that the time of induction of a defense pathway is crucial in triggering the soybean resistance response to P. pachyrhizi. This is the first study to identify the soybean HyPRP group B family and to analyze disease-responsive GmHyPRP during infection by P. pachyrhizi.  相似文献   

19.
The genes encoding HSP70 and HSP90 proteins were isolated from kaluga by homologous cloning and rapid amplification of complementary DNA (cDNA) ends (RACE). HSP70 (GenBank accession no. KP050541) and HSP90 (GenBank accession no. KP050542) cDNAs were composed of 2275 and 2718 bp and encoded polypeptides of 650 and 725 amino acids, respectively. Basic Local Alignment Search Tool (BLAST) analysis showed that HSP70 and HSP90 of kaluga shared high identities with those of Acipenser ruthenus, Acipenser schrenckii, and Acipenser baerii (98–99 %). Fluorescent real-time RT-PCR under unstressed conditions revealed that HSP70 and HSP90 were expressed in 11 different tissues of kaluga. Messenger RNA (mRNA) expressions of both HSP70 and HSP90 were highest in the intestine and lowest in the muscle. In addition, the patterns of mRNA expression of HSP70 and HSP90 were similar, although the level of expression was more in HSP90 than in HSP70 (P < 0.05).We also analyzed patterns of HSP70 and HSP90 expression in the muscle, gill, and liver of kaluga under different combinations of temperature and salinity stress, including temperatures of 4,10, 25, and 28 °C at 0 ppt salinity, and salinities of 10, 20, 30, and 40 ppt at 16 °C, where 16 °C at 0 ppt (parts per thousand) served as the control. We found that levels of mRNA expression of both HSP70 and HSP90 were highest at 4 °C in the muscle, gill, and liver and changed little with salinity stress. These results increase understanding of the mechanisms of stress response of cold freshwater fish.  相似文献   

20.
MicroRNAs (miRNA) are generally described as negative regulators of gene expression. However, some evidence suggests that they may also play positive roles. As such, we reported that miR-1291 leads to a GPC3 mRNA expression increase in hepatoma cells through a 3′ untranslated region (UTR)-dependent mechanism. In the absence of any direct interaction between miR-1291 and GPC3 mRNA, we hypothesized that miR-1291 could act by silencing a negative regulator of GPC3 mRNA expression. Based on in silico predictions and experimental validation, we demonstrate herein that miR-1291 represses the expression of the mRNA encoding the endoplasmic reticulum (ER)-resident stress sensor IRE1α by interacting with a specific site located in the 5′ UTR. Moreover, we show, in vitro and in cultured cells, that IRE1α cleaves GPC3 mRNA at a 3′ UTR consensus site independently of ER stress, thereby prompting GPC3 mRNA degradation. Finally, we show that the expression of a miR-1291-resistant form of IRE1α abrogates the positive effects of miR-1291 on GPC3 mRNA expression. Collectively, our data demonstrate that miR-1291 is a biologically relevant regulator of GPC3 expression in hepatoma cells and acts through silencing of the ER stress sensor IRE1α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号