首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, primarily affecting females and characterized by developmental regression, epilepsy, stereotypical hand movements, and motor abnormalities. Its prevalence is about 1 in 10,000 female births. Rett syndrome is caused by mutations within methyl CpG-binding protein 2 (MECP2) gene. Over 270 individual nucleotide changes which cause pathogenic mutations have been reported. However, eight most commonly occurring missense and nonsense mutations account for almost 70% of all patients. We screened 90 individuals with Rett syndrome phenotype. A total of 19 different MECP2 mutations and polymorphisms were identified in 27 patients. Of the 19 mutations, we identified 7 (37%) frameshift, 6 (31%) nonsense, 14 (74%) missense mutations and one duplication (5%). The most frequent pathogenic changes were: missense p.T158M (11%), p.R133C (7.4%), and p.R306C (7.4%) and nonsense p.R168X (11%), p.R255X (7.4%) mutations. We have identified two novel mutations namely p.385-388delPLPP present in atypical patients and p.Glu290AlafsX38 present in a classical patient of Rett syndrome. Sequence homology for p.385-388delPLPP mutation revealed that these 4 amino acids were conserved across mammalian species. This indicated the importance of these 4 amino acids in structure and function of the protein. A novel variant p.T479T has also been identified in a patient with atypical Rett syndrome.  相似文献   

2.
3.
Endothelial dysfunction plays an essential role in the development and progression of atherosclerotic lesions. Endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) are considered important molecules in the endothelial dysfunction process. The aim of the present study was to evaluate the role of eNOS and ET-1 (EDN1) gene polymorphisms as susceptibility markers for acute coronary syndrome (ACS). Six polymorphisms (rs1799983, rs2070744, rs1800783, rs3087459, rs1800541, and rs5369) of eNOS and EDN1 genes were analyzed by 5′ exonuclease TaqMan genotyping assays in a group of 452 patients with ACS and 283 healthy controls. The results showed increased frequencies of the A allele of the END1-914 C>A (rs3087459) polymorphism in ACS patients when compared to controls (OR = 1.56, Pc = 0.01). Under an additive model, the “AA” genotype was associated with an increased risk of developing ACS, adjusted for gender, hypertension, dyslipidemia, alcohol consumption, smoking, and diabetes (OR = 1.56, p = 0.045). Linkage disequilibrium analysis showed one EDN1 haplotype (AT) with increased frequency in ACS patients when compared to healthy controls (OR = 1.65, Pc = 0.0015). The “AT” haplotype was associated with the risk of developing ACS after adjusting for cardiovascular risk factors using multiple logistic analysis. In this case, the adjusted OR was 1.73 for the AT haplotype (Pc = 0.0018). In summary, resulting data suggest that the END1-914 C>A gene polymorphism could be involved in the risk of developing ACS in Mexican individuals.  相似文献   

4.
Geleophysic dysplasia (GD) is a rare disorder characterized by severe short stature, short hands and feet, limited joint mobility, skin thickening, characteristic facial features (e.g., a “happy” face), and cardiac valvular disorders that often result in an early death. The genes ADAMTSL2 (a disintegrin-like and metalloprotease with thrombospondin type 1 motif-like 2) and FBN1 (fibrillin 1) were recently identified as causative genes for GD. Here, we describe a 10-year-old Japanese female with GD who was born to non-consanguineous parents. At the age of 11 months, she was referred to our hospital because of very short stature for her age (− 4.4 standard deviations of the age-matched value) and a “happy” face with full cheeks, a shortened nose, hypertelorism, and a long and flat philtrum, characteristic of GD. Her hands and feet were small, her skin was thickened, and her joint mobility was generally limited. She had cardiac valvular disorders and history of recurrent respiratory failure. Mutation analysis revealed no abnormalities in ADAMTSL2. However, analysis of FBN1 revealed a novel heterozygous mutation (c.5161T > T/G) in exon 41, which encodes transforming growth factor-β-binding protein-like domain 5 (TB5). GD is an extremely rare disorder and, to our knowledge, only one case of GD with an FBN1 mutation has been reported in Japan. Similar to the previously reported cases of GD, the mutation in the current patient was located in the TB5 domain, which suggests that abnormalities in this domain of FBN1 are responsible for GD.  相似文献   

5.
Isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) are enzymes which convert isocitrate to α-ketoglutarate while reducing nicotinamide adenine dinucleotide phosphate (NADP + to NADPH). IDH1/2 were recently identified as mutated in a large percentage of progressive gliomas. These mutations occur at IDH1R132 or the homologous IDH2R172. Melanomas share some genetic features with IDH1/2-mutated gliomas, such as frequent TP53 mutation. We sought to test whether melanoma is associated with IDH1/2 mutations. Seventy-eight human melanoma samples were analyzed for IDH1R132 and IDH2R172 mutation status. A somatic, heterozygous IDH1 c.C394T (p.R132C) mutation was identified in one human melanoma metastasis to the lung. Having identified this mutation in one metastasis, we sought to test the hypothesis that certain selective pressures in the brain environment may specifically favor the cell growth or survival of tumor cells with mutations in IDH1/2, regardless of primary tumor site. To address this, we analyzed IDH1R132 and IDH2R172 mutation status 53 metastatic brain tumors, including nine melanoma metastases. Results revealed no mutations in any samples. This lack of mutations would suggest that mutations in IDH1R132 or IDH2R172 may be necessary for the formation of tumors in a cell-lineage dependent manner, with a particularly strong selective pressure for mutations in progressive gliomas; this also suggests the lack of a particular selective pressure for growth in brain tissue in general. Studies on the cell-lineages of tumors with IDH1/2 mutations may help clarify the role of these mutations in the development of brain tumors.  相似文献   

6.
Autosomal recessive polycystic kidney disease (ARPKD) is a rare hereditary renal cystic disease involving multiple organs, mainly the kidney and liver. Parents who had an affected child with ARPKD are in strong demand for an early and reliable prenatal diagnosis to guide the future pregnancies. Here we provide an example of prenatal diagnosis of an ARPKD family where traditional antenatal ultrasound examinations failed to produce conclusive results till 26th week of gestation. Compound heterozygous mutations c.274C>T (p.Arg92Trp) and c.9059T>C (p.Leu3020Pro) were identified using targeted exome sequencing in the patient and confirmed by Sanger sequencing. Further, the mother and father were revealed to be carriers of heterozygous c.274C>T and c.9059T>C mutations, respectively. Molecular prenatal diagnosis was performed for the current pregnancy by direct sequencing plus linkage analysis. Two mutations identified in the patient were both found in the fetus. In conclusion, compound heterozygous PKHD1 mutations were elucidated to be the molecular basis of the patient with ARPKD. The newly identified c.9059T>C mutation in the patient expands mutation spectrum in PKHD1 gene. For those ultrasound failed to provide clear diagnosis, we propose the new prenatal diagnosis procedure: first, screening underlying mutations in PKHD1 gene in the proband by targeted exome sequencing; then detecting causative mutations by direct sequencing in the fetal DNA and confirming results by linkage analysis.  相似文献   

7.
Opitz G/BBB syndrome (OS) is a genetically heterogeneous disease. We report on an OS patient with a novel inherited mutation in MID1. Metaphase analysis showed a normal male karyotype. Array CGH revealed a maternally inherited duplication at Xp22.31 (6,467,203–7,992,261, hg18), the size was estimated to 1.5 Mb. Sequence analysis of the MID1 coding region revealed a novel missense mutation in exon 8 (c.1561C>T/p. R521C) which resulted in an ammonia acid substitution (R521C) in the PRX domain of the MID1 protein. The mutation was inherited from unaffected grandmother and mildly affected mother. Prenatal diagnosis was performed for the third pregnancy after identification of the causative mutation in the family. The third fetus was found to be a female carrier. Postnatal follow-up at 2-month-old showed normal phenotype. In conclusion, we reported a familial OS patient with a novel mutation in exon 8 which provided another evidence for that mutation clustered in C-terminal domain of MID1. The newly identified mutation in our patient expands mutation spectrum in MID1 gene.  相似文献   

8.
Waardenburg syndrome type IV (WS4) is a rare genetic disorder, characterized by auditory–pigmentary abnormalities and Hirschsprung disease. Mutations of the EDNRB gene, EDN3 gene, or SOX10 gene are responsible for WS4. In the present study, we reported a case of a Chinese patient with clinical features of WS4. In addition, the three genes mentioned above were sequenced in order to identify whether mutations are responsible for the case. We revealed a novel nonsense mutation, c.1063C>T (p.Q355*), in the last coding exon of SOX10. The same mutation was not found in three unaffected family members or 100 unrelated controls. Then, the function and mechanism of the mutation were investigated in vitro. We found both wild-type (WT) and mutant SOX10 p.Q355* were detected at the expected size and their expression levels are equivalent. The mutant protein also localized in the nucleus and retained the DNA-binding activity as WT counterpart; however, it lost its transactivation capability on the MITF promoter and acted as a dominant-negative repressor impairing function of the WT SOX10.  相似文献   

9.
Colorectal cancer (CRC) is one of the leading causes of death around the world. Its genetic mechanism was intensively investigated in the past decades with findings of a number of canonical oncogenes and tumor-suppressor genes such as APC, KRAS, and TP53. Recent genome-wide association and sequencing studies have identified a series of promising oncogenes including IDH1, IDH2, DNMT3A, and MYD88 in hematologic malignancies. However, whether these genes are involved in CRC remains unknown. In this study, we screened the hotspot mutations of these four genes in 305 CRC samples from Han Chinese by direct sequencing. mRNA expression levels of these genes were quantified by quantitative real-time PCR (RT-qPCR) in paired cancerous and paracancerous tissues. Association analyses between mRNA expression levels and different cancerous stages were performed. Except for one patient harboring IDH1 mutation p.I99M, we identified no previously reported hotspot mutations in colorectal cancer tissues. mRNA expression levels of IDH1, DNMT3A, and MYD88, but not IDH2, were significantly decreased in the cancerous tissues comparing with the paired paracancerous normal tissues. Taken together, the hotspot mutations of IDH1, IDH2, DNMT3A, and MYD88 gene were absent in CRC. Aberrant mRNA expression of IDH1, DNMT3A, and MYD88 gene might be actively involved in the development of CRC.  相似文献   

10.
11.
12.
Studies investigating the associations between glutathione S-transferase (GST) genetic polymorphisms and primary open-angle glaucoma (POAG) have reported controversial results. Therefore, a meta-analysis was performed to clarify the effects of GSTM1 and GSTT1 polymorphisms on POAG risk. Published literatures from PubMed, EMBASE, ISI Web of Science and CBM databases were retrieved. All studies evaluating the association between GSTM1/GSTT1 polymorphisms and POAG were included. Pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using fixed- or random-effects model. Eleven studies on GSTM1 (1339 cases and 1412 controls) and seven studies on GSTT1 (958 cases, 1003 controls) were included. Overall analysis showed that the association between GSTM1 and GSTT1 null genotype and POAG risk is not statistically significant. Subgroup analyses showed that the null genotype of GSTM1 increased the risk of POAG in Asians. In GSTM1GSTT1 interaction analysis, individuals with dual null genotype were associated with a significantly increased risk of POAG when compared with the dual present genotype. In conclusion, the present meta-analysis suggested that GSTM1 null genotypes are associated with increased POAG risk in Asian populations but not in Caucasian and mixed populations. Dual null genotype of GSTM1/GSTT1 is associated with increased risk of POAG. Given the limited sample size, the finding on GST polymorphisms needs further investigation.  相似文献   

13.
14.
Renal hypouricemia (RHUC), as an infrequent hereditary disease, is associated with severe complications such as exercise-induced acute renal failure (EIARF). Loss-of-function mutations in urate transporter gene URAT1 (Type 1) and in glucose transporter gene GLUT9 (Type 2) are major causes of this disorder. In this study, URAT1 and GLUT9 were screened in two uncorrelated families from mainland China and a total of five mutations were identified in exons, including two novel heterozygous URAT1 mutations. In four members of the first family, c.151delG (p.A51fsX64) in exon 1 was detected, which resulted in a frameshift and truncated the original 553-residue-protein to 63 amino acid protein. A missense mutation c.C1546A (p.P516T) in exon 9 in GLUT9 was revealed in the second family, which caused a functional protein substitution at codon 516. These two novel mutations were neither identified in the subsequent scanning of 200 ethnically matched healthy control subjects with normal serum UA level nor in a 1000 genome project database. Thus our report identifies two novel loss-of-function mutations (c.151delG in URAT1 and p.P516T in GLUT9) which cause RHUC and renal dysfunction in two independent RHUC pedigrees.  相似文献   

15.
To estimate the phylogeny and molecular evolution of a single-copy gene encoding plastid acetyl-CoA carboxylase (Acc1) within the StH genome species, two Acc1 homoeologous sequences were isolated from nearly all the sampled StH genome species and were analyzed with those from 35 diploid taxa representing 19 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) the StH genome species from the same areas or neighboring geographic regions are closely related to each other; (2) the Acc1 gene sequences of the StH genome species from North America and Eurasia are evolutionarily distinct; (3) Dasypyrum has contributed to the nuclear genome of Elymus repens and Elymus mutabilis; (4) the StH genome polyploids have higher levels of sequence diversity in the H genome homoeolog than the St genome homoeolog; and (5) the Acc1 sequence may evolve faster in the polyploid species than in the diploids. Our result provides some insight on evolutionary dynamics of duplicate Acc1 gene, the polyploidy speciation and phylogeny of the StH genome species.  相似文献   

16.
Arabidopsis thaliana APETALA3 (AP3) and Antirrhinum majus DEFICIENS (DEF) MADS box genes are required to specify petal and stamen identity. AP3 and DEF are members of the euAP3 lineage, which arose by gene duplication coincident with radiation of the core eudicots. In order to investigate the molecular mechanisms underlying organ development in early diverging clades of core eudicots, we isolated and identified an AP3 homolog, FaesAP3, from Fagopyrum esculentum (buckwheat, Polygonaceae), a multi-food-use pseudocereal with healing benefits. Protein sequence alignment and phylogenetic analyses revealed that FaesAP3 grouped into the euAP3 lineage. Expression analysis showed that FaesAP3 was transcribed only in developing stamens, and differed from AP3 and DEF, which expressed in developing petals and stamens. Moreover, ectopic expression of FaesAP3 rescued stamen development without complementation of petal development in an Arabidopsis ap3 mutant. Our results suggest that FaesAP3 is involved in the development of stamens in buckwheat. These results also suggest that FaesAP3 holds some potential for biotechnical engineering to create a male sterile line of F. esculentum.  相似文献   

17.
Currarino syndrome (CS) is a clinically variable disorder characterized by anorectal, sacral and presacral anomalies. It is associated with loss-of-function mutations in the motor neuron and pancreas homeobox 1 (MNX1) gene. Inheritance is autosomal dominant, expression variable and penetrance incomplete. We describe a Norwegian family with typical CS in which a heterozygous deletion removes the entire MNX1 gene but no other known genes. We also report MNX1 mutations in three other Norwegian families and confirm that the GCC12 repeat (c.373_375[12]) is a normal allelic variant. This work underscores the importance of dosage analysis of MNX1 when Sanger sequencing is negative.  相似文献   

18.
MECP2 duplication results in a well-recognised syndrome in 100% of affected male children; this syndrome is characterised by severe neurodevelopmental disabilities and recurrent infections. However, no sonographic findings have been reported for affected foetuses, and prenatal molecular diagnosis has not been possible for this disease due to lack of prenatal clinical presentation. In this study, we identified a small duplication comprising the MECP2 and L1CAM genes in the Xq28 region in a patient from a family with severe X-linked mental retardation and in a prenatal foetus with brain structural abnormalities. Using high-resolution chromosome microarray analysis (CMA) to screen 108 foetuses with congenital structural abnormalities, we identified additional three foetuses with the MECP2 duplication. Our study indicates that ventriculomegaly, hydrocephalus, agenesis of the corpus callosum, choroid plexus cysts, foetal growth restriction and hydronephrosis might be common ultrasound findings in prenatal foetuses with the MECP2 duplication and provides the first set of prenatal cases with MECP2 duplication, the ultrasonographic phenotype described in these patients will help to recognise the foetuses with possible MECP2 duplication and prompt the appropriate molecular testing.  相似文献   

19.
Mitochondrial antiviral signaling (MAVS) gene plays a key role in antiviral regulation in mammals potentially by activating IRF3/7 and NF-κB and leading to the induction of type I interferon (IFN)-mediated antiviral and inflammatory responses. In this study, we screened genetic polymorphisms of the MAVS gene in various Chinese domestic chicken breeds/populations and evaluated its potential effect on gene expression. Among the sequenced fragment (4678 bp), a total of 75 single nucleotide polymorphisms (SNPs) were identified in 46 chickens from 10 breeds/populations, including 30 coding SNPs and 45 non-coding SNPs. Extremely high haplotype diversity (37 nucleotide haplotypes, 18 amino acid haplotypes) was observed in the coding region (CDS), and a similar pattern of high polymorphisms was also observed for the 3′-untranslated region (3′-UTR). Luciferase assays of two representative 3′-UTR haplotypes were performed in both HEK293 cells and DF-1 chicken fibroblast cells, and we found that they were differentially associated with different abilities on regulating mRNA expression level (P < 0.05). Collectively, we observed a considerably high genetic variability of the MAVS gene, and the 3′-UTR variants had an ability to regulate mRNA expression. These results would cast some clues on understanding the potential role of MAVS on viral resistance in chicken.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号