首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
2.
Although human MDR1 and MDR3 share 86% similarity in their amino acid sequences and are predicted to share conserved domains for drug recognition, their physiological transport substrates are quite different: MDR1 transports xenobiotics and confers multidrug resistance, while MDR3 exports phosphatidylcholine into bile. Although MDR1 shows high ATPase activity, attempts to demonstrate the ATPase activity of human MDR3 have not succeeded. Therefore, it is possible that the difference in the functions of these proteins is caused by their different ATPase activities. To test this hypothesis, a chimera protein containing the transmembrane domains (TMDs) of MDR1 and the nucleotide binding domains (NBDs) of MDR3 was constructed and analyzed. The chimera protein was expressed on the plasma membrane and conferred resistance against vinblastine and paclitaxel, indicating that MDR3 NBDs can support drug transport. Vanadate-induced ADP trapping of MDR3 NBDs in the chimera protein was stimulated by verapamil as was MDR1 NBDs. The purified chimera protein showed drug-stimulated ATPase activity like MDR1, while its Vmax was more than 10-times lower than MDR1. These results demonstrate that the low ATPase activity of human MDR3 cannot account for the difference in the functions of these proteins, and furthermore, that TMDs determine the features of NBDs. To our knowledge, this is the first study analyzing the features of human MDR3 NBDs.  相似文献   

3.
4.
5.

Background

The tumor-associated antigen 90K (TAA90K)/Mac-2-binding protein is expressed at elevated level in cancerous tissues and associated with poor prognosis. Since TAA90K has been implicated in the restructuring of the extracellular matrix, we examined the functional relationship between colon cancer cell-derived TAA90K and the matrix metalloproteinase (MMP) promatrilysin (proMMP-7), and also tested whether TAA90K is a novel substrate for MMPs-2, -7 and -9.

Methods

The effect of TAA90K on proMMP-7 levels in HT-29 conditioned media was quantified by enzyme-linked immunosorbent assays. Binding of TAA90K to MMPs, extracellular matrix proteins and galectin-3 was measured by solid-phase binding assays. Proteolytic cleavage of TAA90K by MMPs was documented by SDS-PAGE and protein sequencing analysis.

Results

TAA90K enhanced extracellular levels of proMMP-7 in HT-29 cells. In addition, TAA90K was cleaved by MMPs-2, -7 and -9. MMP-7-mediated cleavage of TAA90K did not affect its binding to MMP-7, laminin-1, collagen IV and galectin-3 but reduced its interaction with fibronectin and laminin-10, and lowered the levels of proMMP-7 in the HT-29 medium.

Conclusion

TAA90K is a novel substrate for MMPs-2, -7 and -9 and modulates proMMP-7 levels in colon cancer cells.

General significance

Proteolytic cleavage of TAA90K may have functional implications in colon cancer.  相似文献   

6.
Understanding miRNAs' regulatory networks and target genes could facilitate the development of therapies for human diseases such as cancer. Although much useful gene expression profiling data for tumor cell lines is available, microarray data for miRNAs and mRNAs in the human HepG2 cell line have only been compared with that of other cell lines separately. The relationship between miRNAs and mRNAs in integrated expression profiles for HepG2 cells is still unknown. To explore the miRNA–mRNA correlations in hepatocellular carcinoma (HCC) cells, we performed miRNA and mRNA expression profiling in HepG2 cells and normal liver HL-7702 cells at the genome scale using next-generation sequencing technology. We identified 193 miRNAs that are differentially expressed in these two cell lines. Of these, 89 miRNAs were down-regulated in HepG2 cells compared with HL-7702 cells, while 104 miRNAs were up-regulated. We also observed 3035 mRNAs that are significantly dys-regulated in HepG2 cells. We then performed an integrated analysis of the expression data for differentially expressed miRNAs and mRNAs and found several miRNA–mRNA pairs that are significantly correlated in HepG2 cells. Further analysis suggested that these differentially expressed genes were enriched in four tumorigenesis-related signaling pathways, namely, ErbB, JAK–STAT, mTOR, and WNT, which until now had not been fully reported. Our results could be helpful in understanding the mechanisms of HCC occurrence and development.  相似文献   

7.
8.
9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号