首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shao R  Barker SC 《Gene》2011,473(1):36-43
The mitochondrial (mt) genome of the human body louse, Pediculus humanus, consists of 18 minichromosomes. Each minichromosome is 3 to 4 kb long and has 1 to 3 genes. There is unequivocal evidence for recombination between different mt minichromosomes in P. humanus. It is not known, however, how these minichromosomes recombine. Here, we report the discovery of eight chimeric mt minichromosomes in P. humanus. We classify these chimeric mt minichromosomes into two groups: Group I and Group II. Group I chimeric minichromosomes contain parts of two different protein-coding genes that are from different minichromosomes. The two parts of protein-coding genes in each Group I chimeric minichromosome are joined at a microhomologous nucleotide sequence; microhomologous nucleotide sequences are hallmarks of non-homologous recombination. Group II chimeric minichromosomes contain all of the genes and the non-coding regions of two different minichromosomes. The conserved sequence blocks in the non-coding regions of Group II chimeric minichromosomes resemble the "recombination repeats" in the non-coding regions of the mt genomes of higher plants. These repeats are essential to homologous recombination in higher plants. Our analyses of the nucleotide sequences of chimeric mt minichromosomes indicate both homologous and non-homologous recombination between minichromosomes in the mitochondria of the human body louse.  相似文献   

2.
Cui C  Ge X  Gautam M  Kang L  Li Z 《Genetics》2012,191(3):725-738
Interspecific hybridization and allopolyploidization contribute to the origin of many important crops. Synthetic Brassica is a widely used model for the study of genetic recombination and "fixed heterosis" in allopolyploids. To investigate the effects of the cytoplasm and genome combinations on meiotic recombination, we produced digenomic diploid and triploid hybrids and trigenomic triploid hybrids from the reciprocal crosses of three Brassica diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC). The chromosomes in the resultant hybrids were doubled to obtain three allotetraploids (B. juncea, AA.BB; B. napus, AA.CC; B. carinata, BB.CC). Intra- and intergenomic chromosome pairings in these hybrids were quantified using genomic in situ hybridization and BAC-FISH. The level of intra- and intergenomic pairings varied significantly, depending on the genome combinations and the cytoplasmic background and/or their interaction. The extent of intragenomic pairing was less than that of intergenomic pairing within each genome. The extent of pairing variations within the B genome was less than that within the A and C genomes, each of which had a similar extent of pairing. Synthetic allotetraploids exhibited nondiploidized meiotic behavior, and their chromosomal instabilities were correlated with the relationship of the genomes and cytoplasmic background. Our results highlight the specific roles of the cytoplasm and genome to the chromosomal behaviors of hybrids and allopolyploids.  相似文献   

3.

Background and Aims

Dendrobium species show tremendous morphological diversity and have broad geographical distribution. As repetitive sequence analysis is a useful tool to investigate the evolution of chromosomes and genomes, the aim of the present study was the characterization of repetitive sequences from Dendrobium moschatum for comparative molecular and cytogenetic studies in the related species Dendrobium aphyllum, Dendrobium aggregatum and representatives from other orchid genera.

Methods

In order to isolate highly repetitive sequences, a c0t-1 DNA plasmid library was established. Repeats were sequenced and used as probes for Southern hybridization. Sequence divergence was analysed using bioinformatic tools. Repetitive sequences were localized along orchid chromosomes by fluorescence in situ hybridization (FISH).

Key Results

Characterization of the c0t-1 library resulted in the detection of repetitive sequences including the (GA)n dinucleotide DmoO11, numerous Arabidopsis-like telomeric repeats and the highly amplified dispersed repeat DmoF14. The DmoF14 repeat is conserved in six Dendrobium species but diversified in representative species of three other orchid genera. FISH analyses showed the genome-wide distribution of DmoF14 in D. moschatum, D. aphyllum and D. aggregatum. Hybridization with the telomeric repeats demonstrated Arabidopsis-like telomeres at the chromosome ends of Dendrobium species. However, FISH using the telomeric probe revealed two pairs of chromosomes with strong intercalary signals in D. aphyllum. FISH showed the terminal position of 5S and 18S–5·8S–25S rRNA genes and a characteristic number of rDNA sites in the three Dendrobium species.

Conclusions

The repeated sequences isolated from D. moschatum c0t-1 DNA constitute major DNA families of the D. moschatum, D. aphyllum and D. aggregatum genomes with DmoF14 representing an ancient component of orchid genomes. Large intercalary telomere-like arrays suggest chromosomal rearrangements in D. aphyllum while the number and localization of rRNA genes as well as the species-specific distribution pattern of an abundant microsatellite reflect the genomic diversity of the three Dendrobium species.  相似文献   

4.

Background

Streptomyces are widespread bacteria that contribute to the terrestrial carbon cycle and produce the majority of clinically useful antibiotics. While interspecific genomic diversity has been investigated among Streptomyces, information is lacking on intraspecific genomic diversity. Streptomyces pratensis has high rates of homologous recombination but the impact of such gene exchange on genome evolution and the evolution of natural product gene clusters remains uncharacterized.

Results

We report draft genome sequences of four S. pratensis strains and compare to the complete genome of Streptomyces flavogriseus IAF-45-CD (=ATCC 33331), a strain recently reclassified to S. pratensis. Despite disparate geographic origins, the genomes are highly similar with 85.9% of genes present in the core genome and conservation of all natural product gene clusters. Natural products include a novel combination of carbapenem and beta-lactamase inhibitor gene clusters. While high intraspecies recombination rates abolish the phylogenetic signal across the genome, intraspecies recombination is suppressed in two genomic regions. The first region is centered on an insertion/deletion polymorphism and the second on a hybrid NRPS-PKS gene. Finally, two gene families accounted for over 25% of the divergent genes in the core genome. The first includes homologs of bldB (required for spore development and antibiotic production) while the second includes homologs of an uncharacterized protein with a helix-turn-helix motif (hpb). Genes from these families co-occur with fifteen pairs spread across the genome. These genes have evidence for co-evolution of co-localized pairs, supporting previous assertions that these genes may function akin to a toxin-antitoxin system.

Conclusions

S. pratensis genomes are highly similar with exceptional levels of recombination which erase phylogenetic signal among strains of the species. This species has a large core genome and variable terminal regions that are smaller than those found in interspecies comparisons. There is no geographic differentiation between these strains, but there is evidence for local linkage disequilibrium affecting two genomic regions. We have also shown further observational evidence that the DUF397-HTH (bldB and hpb) are a novel toxin-antitoxin pair.  相似文献   

5.
Baculoviruses are members of a large, well-characterized family of dsDNA viruses that have been identified from insects of the orders Lepidoptera, Hymenoptera, and Diptera. Baculovirus genomes from different virus species generally exhibit a considerable degree of structural diversity. However, some sequenced baculovirus genomes from closely related viruses are structurally very similar and share overall nucleotide sequence identities in excess of 95%. This review focuses on the comparative analysis of partial and complete nucleotide sequences from two groups of closely related baculoviruses with broad host ranges: (a) group I multiple nucleopolyhedroviruses (MNPVs) from a cluster including Autographa californica (Ac)MNPV, Rachiplusia ou (Ro)MNPV, and Plutella xylostella (Plxy)MNPV; and (b) granuloviruses (GVs) from a cluster including Xestia c-nigrum (Xecn)GV and Helicoverpa armigera (Hear)GV. Even though the individual viruses in these clusters share high nucleotide sequence identities, a significant degree of genomic rearrangement (in the form of insertions, deletions, and homologous recombination resulting in allelic replacement) is evident from alignments of their genomes. These observations suggest an important role for recombination in the early evolution and biological characteristics of baculoviruses of these two groups.  相似文献   

6.
Brucella is a facultative intracellular bacterium belongs to the class alpha proteobacteria. It causes zoonotic disease brucellosis to wide range of animals. Brucella species are highly conserved in nucleotide level. Here, we employed a comparative genomics approach to examine the role of homologous recombination and positive selection in the evolution of Brucella. For the analysis, we have selected 19 complete genomes from 8 species of Brucella. Among the 1599 core genome predicted, 24 genes were showing signals of recombination but no significant breakpoint was found. The analysis revealed that recombination events are less frequent and the impact of recombination occurred is negligible on the evolution of Brucella. This leads to the view that Brucella is clonally evolved. On other hand, 56 genes (3.5 % of core genome) were showing signals of positive selection. Results suggest that natural selection plays an important role in the evolution of Brucella. Some of the genes that are responsible for the pathogenesis of Brucella were found positively selected, presumably due to their role in avoidance of the host immune system.  相似文献   

7.
Homologous recombination affects myriad aspects of genome evolution, from standing levels of nucleotide diversity to the efficacy of natural selection. Rates of crossing over show marked variability at all scales surveyed, including species-, population-, and individual-level differences. Even within genomes, crossovers are nonrandomly distributed in a wide diversity of taxa. Although intra- and intergenomic heterogeneities in crossover distribution have been documented in Drosophila, the scale and degree of crossover rate heterogeneity remain unclear. In addition, the genetic features mediating this heterogeneity are unknown. Here we quantify fine-scale heterogeneity in crossover distribution in a 2.1-Mb region of the Drosophila melanogaster X chromosome by localizing crossover breakpoints in 2500 individuals, each containing a single crossover in this specific X chromosome region. We show 90-fold variation in rates of crossing over at a 5-kb scale, place this variation in the context of several aspects of genome evolution, and identify several genetic features associated with crossover rates. Our results shed new light on the scale and magnitude of crossover rate heterogeneity in D. melanogaster and highlight potential features mediating this heterogeneity.  相似文献   

8.
Wolbachia surface protein (WSP) is an eight beta-barrel transmembrane structure which participates in host immune response, cell proliferation, pathogenicity and controlled cell death program. The protein has four extracellular loops containing hyper variable regions separated by conserved regions. The WSP structure is homologous to Neisseria surface protein (Nsp A) which has about 34% similarity including antigenic variation and hydrophilicity. Recombination has a large impact on diversity of this protein including positive selection which is major constraint on protein evolution. The molecular mechanism through which Wolbachia induces various reproductive anomalies is unclear; a key feature observed for such anomalies might be because of Wolbachia undergoing extensive recombination. In Wolbachia, increased recombination is observed in ankyrin proteins, surface proteins and in some hypothetical proteins. Genetic divergence is extensive in the WSP gene, WSP is known to be a chimeric protein involved in host-symbiont interactions. Here we predicted the structural and functional variations in WSP sequences of Wolbachia present in D. melanogaster, A. tabida and in B. malayi.  相似文献   

9.
Animal genomes contain ∼20,000 genes. Additionally millions of genes for antigen receptors are generated in cells of the immune system from the sets of separate gene segments by a mechanism known as the V(D)J somatic recombination. The components of the V(D)J recombination system, Recombination-Activating Gene proteins (RAG1 and RAG2) and recombination signal sequence (RSS), are thought to have “entered” the vertebrate genome as a hypothetical “RAG transposon”. Recently discovered mobile elements have terminal inverted repeats (TIRs) similar to RSS and may encode proteins with a different degree of similarity to RAG1. We describe a novel N-RAG-TP transposon identified from the sea slug Aplysia californica that encodes a protein similar to the N-terminal part of RAG1 in vertebrates. This refines the “RAG transposon” hypothesis and allows us to propose a scenario for V(D)J recombination machinery evolution from a relic transposon related to the existing mobile elements N-RAG-TP, Chapaev, and Transib.  相似文献   

10.
In order to determine the homologous regions shared by the cultivated Brassica genomes, linkage maps of the diploid cultivated B. rapa (A genome, n = 10), B. nigra (B genome, n = 8) and B. oleracea (C genome, n = 9), were compared. We found intergenomic conserved regions but with extensitve reordering among the genomes. Eighteen linkage groups from all three species could be associated on the basis of homologous segments based on at least three common markers. Intragenomic homologous conservation was also observed for some of the chromosomes of the A, B and C genomes. A possible chromosome phylogenetic pathway based on an ancestral genome of at least five, and no more than seven chromosomes, was drawn from the chromosomal inter-relationships observed. These results demonstrate that extensive duplication and rearrangement have been involved in the formation of the Brassica genomes from a smaller ancestral genome.  相似文献   

11.

Background

Homoeologous sequences pose a particular challenge if bacterial artificial chromosome (BAC) contigs shall be established for specific regions of an allopolyploid genome. Single nucleotide polymorphisms (SNPs) differentiating between homoeologous genomes (intergenomic SNPs) may represent a suitable screening tool for such purposes, since they do not only identify homoeologous sequences but also differentiate between them.

Results

Sequence alignments between Brassica rapa (AA) and Brassica oleracea (CC) sequences mapping to corresponding regions on chromosomes A1 and C1, respectively were used to identify single nucleotide polymorphisms between the A and C genomes. A large fraction of these polymorphisms was also present in Brassica napus (AACC), an allopolyploid species that originated from hybridisation of A and C genome species. Intergenomic SNPs mapping throughout homoeologous chromosome segments spanning approximately one Mbp each were included in Illumina’s GoldenGate® Genotyping Assay and used to screen multidimensional pools of a Brassica napus bacterial artificial chromosome library with tenfold genome coverage. Based on the results of 50 SNP assays, a BAC contig for the Brassica napus A subgenome was established that spanned the entire region of interest. The C subgenome region was represented in three BAC contigs.

Conclusions

This proof-of-concept study shows that sequence resources of diploid progenitor genomes can be used to deduce intergenomic SNPs suitable for multiplex polymerase chain reaction (PCR)-based screening of multidimensional BAC pools of a polyploid organism. Owing to their high abundance and ease of identification, intergenomic SNPs represent a versatile tool to establish BAC contigs for homoeologous regions of a polyploid genome.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-560) contains supplementary material, which is available to authorized users.  相似文献   

12.
Here we report the use of a multi-genome DNA microarray to investigate the genome diversity of Bacillus cereus group members and elucidate the events associated with the emergence of Bacillus anthracis the causative agent of anthrax—a lethal zoonotic disease. We initially performed directed genome sequencing of seven diverse B. cereus strains to identify novel sequences encoded in those genomes. The novel genes identified, combined with those publicly available, allowed the design of a “species” DNA microarray. Comparative genomic hybridization analyses of 41 strains indicate that substantial heterogeneity exists with respect to the genes comprising functional role categories. While the acquisition of the plasmid-encoded pathogenicity island (pXO1) and capsule genes (pXO2) represents a crucial landmark dictating the emergence of B. anthracis, the evolution of this species and its close relatives was associated with an overall shift in the fraction of genes devoted to energy metabolism, cellular processes, transport, as well as virulence.  相似文献   

13.

Background

In the honeybee Apis mellifera, the bacterial gut community is consistently colonized by eight distinct phylotypes of bacteria. Managed bee colonies are of considerable economic interest and it is therefore important to elucidate the diversity and role of this microbiota in the honeybee. In this study, we have sequenced the genomes of eleven strains of lactobacilli and bifidobacteria isolated from the honey crop of the honeybee A. mellifera.

Results

Single gene phylogenies confirmed that the isolated strains represent the diversity of lactobacilli and bifidobacteria in the gut, as previously identified by 16S rRNA gene sequencing. Core genome phylogenies of the lactobacilli and bifidobacteria further indicated extensive divergence between strains classified as the same phylotype. Phylotype-specific protein families included unique surface proteins. Within phylotypes, we found a remarkably high level of gene content diversity. Carbohydrate metabolism and transport functions contributed up to 45% of the accessory genes, with some genomes having a higher content of genes encoding phosphotransferase systems for the uptake of carbohydrates than any previously sequenced genome. These genes were often located in highly variable genomic segments that also contained genes for enzymes involved in the degradation and modification of sugar residues. Strain-specific gene clusters for the biosynthesis of exopolysaccharides were identified in two phylotypes. The dynamics of these segments contrasted with low recombination frequencies and conserved gene order structures for the core genes. Hits for CRISPR spacers were almost exclusively found within phylotypes, suggesting that the phylotypes are associated with distinct phage populations.

Conclusions

The honeybee gut microbiota has been described as consisting of a modest number of phylotypes; however, the genomes sequenced in the current study demonstrated a very high level of gene content diversity within all three described phylotypes of lactobacilli and bifidobacteria, particularly in terms of metabolic functions and surface structures, where many features were strain-specific. Together, these results indicate niche differentiation within phylotypes, suggesting that the honeybee gut microbiota is more complex than previously thought.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1476-6) contains supplementary material, which is available to authorized users.  相似文献   

14.
Chemolithoautotrophic Epsilonproteobacteria are ubiquitous in sulfidic, oxygen-poor habitats, including hydrothermal vents, marine oxygen minimum zones, marine sediments and sulfidic caves and have a significant role in cycling carbon, hydrogen, nitrogen and sulfur in these environments. The isolation of diverse strains of Epsilonproteobacteria and the sequencing of their genomes have revealed that this group has the metabolic potential to occupy a wide range of niches, particularly at dynamic deep-sea hydrothermal vents. We expand on this body of work by examining the population genomics of six strains of Lebetimonas, a vent-endemic, thermophilic, hydrogen-oxidizing Epsilonproteobacterium, from a single seamount in the Mariana Arc. Using Lebetimonas as a model for anaerobic, moderately thermophilic organisms in the warm, anoxic subseafloor environment, we show that genomic content is highly conserved and that recombination is limited between closely related strains. The Lebetimonas genomes are shaped by mobile genetic elements and gene loss as well as the acquisition of novel functional genes by horizontal gene transfer, which provide the potential for adaptation and microbial speciation in the deep sea. In addition, these Lebetimonas genomes contain two operons of nitrogenase genes with different evolutionary origins. Lebetimonas expressed nifH during growth with nitrogen gas as the sole nitrogen source, thus providing the first evidence of nitrogen fixation in any Epsilonproteobacteria from deep-sea hydrothermal vents. In this study, we provide a comparative overview of the genomic potential within the Nautiliaceae as well as among more distantly related hydrothermal vent Epsilonproteobacteria to broaden our understanding of microbial adaptation and diversity in the deep sea.  相似文献   

15.
16.
The phytoplasmas are currently named using the Candidatus category, as the inability to grow them in vitro prevented (i) the performance of tests, such as DNA-DNA hybridization, that are regarded as necessary to establish species boundaries, and (ii) the deposition of type strains in culture collections. The recent accession to complete or nearly complete genome sequence information disclosed the opportunity to apply to the uncultivable phytoplasmas the same taxonomic approaches used for other bacteria. In this work, the genomes of 14 strains, belonging to the 16SrI, 16SrIII, 16SrV and 16SrX groups, including the species “Ca. P. asteris”, “Ca. P. mali”, “Ca. P. pyri”, “Ca. P. pruni”, and “Ca. P. australiense” were analyzed along with Acholeplasma laidlawi, to determine their taxonomic relatedness. Average nucleotide index (ANIm), tetranucleotide signature frequency correlation index (Tetra), and multilocus sequence analysis of 107 shared genes using both phylogenetic inference of concatenated (DNA and amino acid) sequences and consensus networks, were carried out. The results were in large agreement with the previously established 16S rDNA based classification schemes. Moreover, the taxonomic relationships within the 16SrI, 16SrIII and 16SrX groups, that represent clusters of strains whose relatedness could not be determined by 16SrDNA analysis, could be comparatively evaluated with non-subjective criteria. “Ca. P. mali” and “Ca. P. pyri” were found to meet the genome characteristics for the retention into two different, yet strictly related species; representatives of subgroups 16SrI-A and 16SrI-B were also found to meet the standards used in other bacteria to distinguish separate species; the genomes of the strains belonging to 16SrIII were found more closely related, suggesting that their subdivision into Candidatus species should be approached with caution.  相似文献   

17.
18.
While uniparental transmission of mtDNA is widespread and dominating in eukaryotes leaving mutation as the major source of genotypic diversity, recently, biparental inheritance of mitochondrial genes has been demonstrated in reciprocal crosses of Pelargonium zonale and P. inquinans. The thereby arising heteroplasmy carries the potential for recombination between mtDNAs of different descent, i.e. between the parental mitochondrial genomes. We have analyzed these Pelargonium hybrids for mitochondrial intergenomic recombination events by examining differences in DNA blot hybridization patterns of the mitochondrial genes atp1 and cob. Further investigation of these genes and their flanking regions using nucleotide sequence polymorphisms and PCR revealed DNA segments in the progeny, which contained both P. zonale and P. inquinans sequences suggesting an intergenomic recombination in hybrids of Pelargonium. This turns Pelargonium into an interesting subject for studies of recombination and evolutionary dynamics of mitochondrial genomes.  相似文献   

19.
The pragmatic species concept for Bacteria and Archaea is ultimately based on DNA-DNA hybridization (DDH). While enabling the taxonomist, in principle, to obtain an estimate of the overall similarity between the genomes of two strains, this technique is tedious and error-prone and cannot be used to incrementally build up a comparative database. Recent technological progress in the area of genome sequencing calls for bioinformatics methods to replace the wet-lab DDH by in-silico genome-to-genome comparison. Here we investigate state-of-the-art methods for inferring whole-genome distances in their ability to mimic DDH. Algorithms to efficiently determine high-scoring segment pairs or maximally unique matches perform well as a basis of inferring intergenomic distances. The examined distance functions, which are able to cope with heavily reduced genomes and repetitive sequence regions, outperform previously described ones regarding the correlation with and error ratios in emulating DDH. Simulation of incompletely sequenced genomes indicates that some distance formulas are very robust against missing fractions of genomic information. Digitally derived genome-to-genome distances show a better correlation with 16S rRNA gene sequence distances than DDH values. The future perspectives of genome-informed taxonomy are discussed, and the investigated methods are made available as a web service for genome-based species delineation.  相似文献   

20.
Wang X  Xu X 《Gene》2012,494(1):17-23
The extreme variability of the mitochondrial (mito) genomes of bivalves makes it difficult to understand their evolutionary dynamics, given that species from different families do not share comparable features. We compared the mitogenomes from four Paphia clams (three of them were firstly sequenced) and found that mitogenome reorganization among the four congeneric species is not random but follows phylogenetic trends. Start/stop codon variations are species-correlated rather than gene-correlated, and bear useful phylogenetic information. Unique start/stop codon usage in P. euglypta and A+T content in P. amabilis indicates that these mitogenome-level characters, usually considered to be conservative features in other lineages, may not be phylogenetically evolved, but may have evolved via species-specific mitogenomic maintenance mechanisms. Variable divergence of two trnM genes in different lineages may demonstrate differences in mechanisms by which paralogous trnM genes are maintained. Sequence alignment analysis indicates that the VNTRs in the four mitogenomes have a common origin. The rationale of the subgenus Neotapes Kuroda and Habe, 1971 was supported by evidence from morphological characters, mitogenomic features, as well as phylogenetic analyses using cox1 and rrnS genes. The data suggest that the taxonomic basis of the subgenus should be “smooth surface” but not “undulated lines,” and P. textile should be classified to the Neotapes subgenus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号