首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
2.
3.
4.
5.
6.
Histone demethylation regulates chromatin structure and gene expression, and is catalyzed by various histone demethylases. Trimethylation of histone H3 at lysine 4 (H3K4) is coupled to active gene expression; trimethyl H3K4 is demethylated by Jumonj C (JmjC) domain‐containing demethylases in mammals. Here we report that a plant‐specific JmjC domain‐containing protein known as PKDM7B (At4g20400) demethylates trimethyl H3K4. PKDM7B mediates H3K4 demethylation in a key floral promoter, FLOWERING LOCUS T (FT), and an FT homolog, TWIN SISTER OF FT (TSF), and represses their expression to inhibit the floral transition in Arabidopsis. Our findings suggest that there are at least two distinct sub‐families of JmjC domain‐containing demethylases that demethylate the active trimethyl H3K4 mark in eukaryotic genes, and reveal a plant‐specific JmjC domain enzyme capable of H3K4 demethylation.  相似文献   

7.
Gene expression is epigenetically regulated through DNA methylation and covalent chromatin modifications, such as acetylation, phosphorylation, ubiquitination, sumoylation, and methylation of histones. Histone methylation state is dynamically regulated by different groups of histone methyltransferases and demethylases. The trimethylation of histone 3 (H3K4) at lysine 4 is usually associated with the activation of gene expression, whereas trimethylation of histone 3 at lysine 27 (H3K27) is associated with the repression of gene expression. The polycomb repressive complex contains the H3K27 methyltransferase Ezh2 and controls dimethylation and trimethylation of H3K27 (H3K27me2/3). The Jumonji domain containing-3 (Jmjd3, KDM6B) and ubiquitously transcribed X-chromosome tetratricopeptide repeat protein (UTX, KDM6A) have been identified as H3K27 demethylases that catalyze the demethylation of H3K27me2/3. The role and mechanisms of both JMJD3 and UTX have been extensively studied for their involvement in development, cell plasticity, immune system, neurodegenerative disease, and cancer. In this review, we will focus on recent progresses made on understanding JMJD3 in the regulation of gene expression in development and diseases. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.  相似文献   

8.
Holocarboxylase synthetase (HCS) mediates the binding of biotin to lysine (K) residues in histones H2A, H3 and H4; HCS knockdown disturbs gene regulation and decreases stress resistance and lifespan in eukaryotes. We tested the hypothesis that HCS interacts physically with histone H3 for subsequent biotinylation. Co-immunoprecipitation experiments were conducted and provided evidence that HCS co-localizes with histone H3 in human cells; physical interactions between HCS and H3 were confirmed using limited proteolysis assays. Yeast two-hybrid (Y2H) studies revealed that the N-terminal and C-terminal domains in HCS participate in H3 binding. Recombinant human HCS was produced and exhibited biological activity, as evidenced by biotinylation of its known substrate, recombinant p67. Recombinant histone H3.2 and synthetic H3-based peptides were also good targets for biotinylation by recombinant HCS (rHCS) in vitro, based on tracing histone-bound biotin with [3H]biotin, streptavidin and anti-biotin antibody. Biotinylation site-specific antibodies were generated and revealed that both K9 and K18 in H3 were biotinylated by HCS. Collectively, these studies provide conclusive evidence that HCS interacts directly with histone H3, causing biotinylation of K9 and K18. We speculate that the targeting of HCS to distinct regions in human chromatin is mediated by DNA sequence, biotin, RNA, epigenetic marks or chromatin proteins.  相似文献   

9.
Most imprinted genes are concerned with embryonic development, especially placental development. Here, we identified a placenta-specific imprinted gene Qpct. Our results show that Qpct is widely expressed during early embryonic development and can be detected in the telecephalon, midbrain, and rhombencephalon at E9.5–E11.5. Moreover, Qpct is strikingly expressed in the brain, lung and liver in E15.5. Expression signals for Qpct achieved a peak at E15.5 during placental development and were only detected in the labyrinth layer in E15.5 placenta. ChIP assay results suggest that the modification of histone H3K4me3 can result in maternal activating of Qpct.  相似文献   

10.
Epigenetic regulation of chromatin structure is a fundamental process for eukaryotes. Regulators include DNA methylation, microRNAs and chromatin modifications. Within the chromatin modifiers, one class of enzymes that can functionally bind and modify chromatin, through the removal of methyl marks, is the histone lysine demethylases. Here, we summarize the current findings of the 13 known histone lysine demethylases in Drosophila melanogaster, and discuss the critical role of these histone-modifying enzymes in the maintenance of genomic functions. Additionally, as histone demethylase dysregulation has been identified in cancer, we discuss the advantages for using Drosophila as a model system to study tumorigenesis.  相似文献   

11.
12.
We characterized 79 microsatellite DNA markers, which were obtained from genomic libraries enriched for CA, GA, ATG and TAGA motif repeats, in the Pacific oyster Crassostrea gigas. For eight F1 grandparents or great‐grandparents of mapping families, the average heterozygosity, 0.705, and average number of alleles per locus, 5.7, did not vary among motif‐repeat or motif‐complexity categories. Non‐amplifying polymerase chain reaction null alleles, which were confirmed by segregation in the mapping families, were detected at 41 (51.9%) of the 79 loci. Cross‐species amplifications from C. angulata, C. sikamea, C. ariakensis and C. virginica showed a precipitous decline with distance from the focal species C. gigas.  相似文献   

13.
14.
J An  X Zhang  J Qin  Y Wan  Y Hu  T Liu  J Li  W Dong  E Du  C Pan  W Zeng 《Cell death & disease》2014,5(4):e1196
Self-renewal and differentiation of spermatogonial stem cells (SSCs) are the foundation of spermatogenesis throughout a male''s life. SSC transplantation will be a valuable solution for young male patients to preserve their fertility. As SSCs in the collected testis tissue from the patients are very limited, it is necessary to expansion the SSCs in vitro. Previous studies suggested that histone methyltransferase ERG-associated protein with SET domain (ESET) represses gene expression and is essential for the maintenance of the pool of embryonic stem cells and neurons. The objective of this study was to determine the role of ESET in SSCs using in vitrocell culture and germ cell transplantation. Cell transplantation assay showed that knockdown of ESET reduced the number of seminiferous tubules with spermatogenesis when compared with that of the control. Knockdown of ESET also upregulated the expression of apoptosis-associated genes (such as P53, Caspase9, Apaf1), whereas inhibited the expression of apoptosis-suppressing genes (such as Bcl2l1, X-linked inhibitor of apoptosis protein). In addition, suppression of ESET led to increase in expression of Caspase9 and activation of Caspase3 (P17) as well as cleavage of poly (ADP-ribose) polymerase. Among the five ESET-targeting genes (Cox4i2, spermatogenesis and oogenesis Specific Basic Helix-Loop-Helix 2, Nobox, Foxn1 and Dazl) examined by ChIP assay, Cox4i2 was found to regulate SSC apoptosis by the rescue experiment. BSP analyses further showed that DNA methylation in the promoter loci of Cox4i2was influenced by ESET, indicating that ESET also regulated gene expression through DNA methylation in addition to histone methylation. In conclusion, we found that ESET regulated SSC apoptosis by suppressing of Cox4i2 expression through histone H3 lysine 9 tri-methylation and DNA methylation. The results obtained will provide unique insights that would broaden the research on SSC biology and contribute to the treatment of male infertility.  相似文献   

15.
16.

Background

Studies of DNA methylomes in a wide range of eukaryotes have revealed both conserved and divergent characteristics of DNA methylation among phylogenetic groups. However, data on invertebrates particularly molluscs are limited, which hinders our understanding of the evolution of DNA methylation in metazoa. The sequencing of the Pacific oyster Crassostrea gigas genome provides an opportunity for genome-wide profiling of DNA methylation in this model mollusc.

Results

Homologous searches against the C. gigas genome identified functional orthologs for key genes involved in DNA methylation: DNMT1, DNMT2, DNMT3, MBD2/3 and UHRF1. Whole-genome bisulfite sequencing (BS-seq) of the oyster’s mantle tissues revealed that more than 99% methylation modification was restricted to cytosines in CpG context and methylated CpGs accumulated in the bodies of genes that were moderately expressed. Young repeat elements were another major targets of CpG methylation in oysters. Comparison with other invertebrate methylomes suggested that the 5’-end bias of gene body methylation and the negative correlation between gene body methylation and gene length were the derived features probably limited to the insect lineage. Interestingly, phylostratigraphic analysis showed that CpG methylation preferentially targeted genes originating in the common ancestor of eukaryotes rather than the oldest genes originating in the common ancestor of cellular organisms.

Conclusions

Comparative analysis of the oyster DNA methylomes and that of other animal species revealed that the characteristics of DNA methylation were generally conserved during invertebrate evolution, while some unique features were derived in the insect lineage. The preference of methylation modification on genes originating in the eukaryotic ancestor rather than the oldest genes is unexpected, probably implying that the emergence of methylation regulation in these ''relatively young’ genes was critical for the origin and radiation of eukaryotes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1119) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
19.
Histones are among the most conserved proteins known, but organismal differences do exist. In this study, we examined the contribution that divergent amino acids within histone H3 make to cell growth and chromatin structure in Saccharomyces cerevisiae. We show that, while amino acids that define histone H3.3 are dispensable for yeast growth, substitution of residues within the histone H3 α3 helix with human counterparts results in a severe growth defect. Mutations within this domain also result in altered nucleosome positioning, both in vivo and in vitro, which is accompanied by increased preference for nucleosome-favoring sequences. These results suggest that divergent amino acids within the histone H3 α3 helix play organismal roles in defining chromatin structure.  相似文献   

20.
The centromere is a structurally and functionally specialized region present on every eukaryotic chromosome. Lotus japonicus is a model legume species for which there is very limited information on the centromere structure. Here we cloned and characterized the L. japonicus homolog of the centromere-specific histone H3 gene (LjCenH3) encoding a 159-amino acid protein. Using an Agrobacterium-based transformation system, LjCenH3 tagged with a green fluorescent protein was transferred into L. japonicus cells. The centromeric position of LjCENH3 protein was revealed on L. japonicus metaphase chromosomes by an immunofluorescence assay. The identification of LjCenH3 as a critical centromere landmark could pave the way for a better understanding of centromere structure in this model and other agriculturally important legume species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号