首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In an effort to understand whether heat shock protein 70 (Hsp70) participates in the environmental 5 °C signal reception/transduction toward breaking embryonic diapause of the silkworm Bombyx mori, we isolated a cDNA for Hsp70a and examined the expression of Hsp70a mRNA in B. mori diapause and nondiapause eggs by quantitative real-time PCR. Hsp70a mRNA gradually increased in diapause eggs continuously kept at 25 °C after oviposition to maintain diapause. When diapause eggs were exposed to the diapause-terminating condition of 5 °C beginning at 2 days post-oviposition, Hsp70a mRNA increased beginning at 5 days post-cold treatment. Even in nondiapause eggs, Hsp70a mRNA increased slightly with exposure to 5 °C. These results suggest that Hsp70a is involved in reception/transduction of the diapause-terminating (5 °C) signal via gene activation. The expression patterns of Hsp70a mRNA are discussed in relation to those of the cold-response gene Samui.  相似文献   

2.
Small heat shock proteins (sHsps) are probably the most diverse in structure and function among the various superfamilies of stress proteins. To explore the diverse functions of insect sHsps, six sHsp cDNAs were cloned from the midgut cDNA library of Spodoptera litura, and a phylogenetic tree was constructed based on the conserved α-crystalline domains. The expression patterns in different developmental stages and tissues, as well as in response to both thermal and 20-hydroxyecdysone (20E) induction, were studied by real-time quantitative PCR. Based on sequence characteristics and phylogenetic relationships, the six SlHsps were classified into three independent groups: BmHsp20.4 like proteins (SlHsp19.7, 20.4, 20.7, 20.8), BmHsp26.6 like protein (SlHsp20), and BmHsp21.4 like protein (SlHsp21.4). All the SlHsps showed highest expression in the Malpighian tubules. The four BmHsp20.4 like protein genes were up-regulated by thermal stress and showed expression variation with development. SlHsp20 exhibited lower expression levels in both egg and larval stages than in pupal and adult stages. SlHsp21.4 retained a constant expression level during all life stages. The expression of both SlHsp20.4 and SlHsp20.8 was significantly up-regulated by 20E. These results indicate that sHsps play diverse functions in S. litura: the BmHsp20.4 like proteins are involved in both thermal adaptation and development; SlHsp20 does not respond to temperature stress but possibly plays a role in metamorphosis; SlHsp21.4 may have no direct relationship with either thermal response or development.  相似文献   

3.
4.
RNA interference has been described as a powerful genetic tool for gene functional analysis and a promising approach for pest management. However, RNAi efficiency varies significantly among insect species due to distinct RNAi machineries. Lepidopteran insects include a large number of pests as well as model insects, such as the silkworm, Bombyx mori. However, only limited success of in vivo RNAi has been reported in lepidoptera, particularly during the larval stages when the worms feed the most and do the most harm to the host plant. Enhancing the efficiency of larval RNAi in lepidoptera is urgently needed to develop RNAi-based pest management strategies. In the present study, we investigate the function of the conserved RNAi core factor, Argonaute2 (Ago2), in mediating B. mori RNAi efficiency. We demonstrate that introducing BmAgo2 dsRNA inhibits the RNAi response in both BmN cells and embryos. Furthermore, we establish several transgenic silkworm lines to assess the roles of BmAgo2 in larval RNAi. Over-expressing BmAgo2 significantly facilitated both dsRNA-mediated larval RNAi when targeting DsRed using dsRNA injection and shRNA-mediated larval RNAi when targeting BmBlos2 using transgenic shRNA expression. Our results show that BmAgo2 is involved in RNAi in B. mori and provides a promising approach for improving larval RNAi efficiency in B. mori and in lepidopteran insects in general.  相似文献   

5.

Background

The analysis of codon usage is a good way to understand the genetic and evolutionary characteristics of an organism. However, there are only a few reports related with the codon usage of the domesticated silkworm, Bombyx mori (B. mori). Hence, the codon usage of B. mori was analyzed here to reveal the constraint factors and it could be helpful to improve the bioreactor based on B. mori.

Results

A total of 1,097 annotated mRNA sequences from B. mori were analyzed, revealing there is only a weak codon bias. It also shows that the gene expression level is related to the GC content, and the amino acids with higher general average hydropathicity (GRAVY) and aromaticity (Aromo). And the genes on the primary axis are strongly positively correlated with the GC content, and GC3s. Meanwhile, the effective number of codons (ENc) is strongly correlated with codon adaptation index (CAI), gene length, and Aromo values. However, the ENc values are correlated with the second axis, which indicates that the codon usage in B. mori is affected by not only mutation pressure and natural selection, but also nucleotide composition and the gene expression level. It is also associated with Aromo values, and gene length. Additionally, B. mori has a greater relative discrepancy in codon preferences with Drosophila melanogaster (D. melanogaster) or Saccharomyces cerevisiae (S. cerevisiae) than with Arabidopsis thaliana (A. thaliana), Escherichia coli (E. coli), or Caenorhabditis elegans (C. elegans).

Conclusions

The codon usage bias in B. mori is relatively weak, and many influence factors are found here, such as nucleotide composition, mutation pressure, natural selection, and expression level. Additionally, it is also associated with Aromo values, and gene length. Among them, natural selection might play a major role. Moreover, the “optimal codons” of B. mori are all encoded by G and C, which provides useful information for enhancing the gene expression in B. mori through codon optimization.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1596-z) contains supplementary material, which is available to authorized users.  相似文献   

6.
We isolated a calreticulin cDNA from the silkworm, Bombyx mori. The cDNA encodes 398 amino acid residues of B. mori calreticulin, with an endoplasmic reticulum retentional HDEL motif at its C-terminus and a predicted molecular mass of 45,801 Da. The B. mori calreticulin shows high protein homology with calreticulin from G. mellonella (88%), A. aegypti (71%), D. melanogaster (69%) and H. sapiens (63%). The highest level of mRNA expression of B. mori calreticulin was exhibited in the fat body of this insect. Although expression of B. mori calreticulin was affected by disturbances in intracellular calcium levels, other ER stress conditions such as inhibition of intracellular protein transport, reduction of disulfide formation, glycosylation inhibition, heat shock and oxidative stress did not disrupt induction of B. mori calreticulin.  相似文献   

7.
Stress granules (SGs) are cytoplasmic bodies wherein translationally silenced mRNAs are recruited for triage in response to environmental stress. We report that Drosophila cells form SGs in response to arsenite and heat shock. Drosophila SGs, like mammalian SGs, are distinct from but adjacent to processing bodies (PBs, sites of mRNA silencing and decay), require polysome disassembly, and are in dynamic equilibrium with polysomes. We further examine the role of the two Drosophila eIF2α kinases, PEK and GCN2, in regulating SG formation in response to heat and arsenite stress. While arsenite-induced SGs are dependent upon eIF2α phosphorylation, primarily via PEK, heat-induced SGs are phospho-eIF2α-independent. In contrast, heat-induced SGs require eIF2α phosphorylation in mammalian cells, as non-phosphorylatable eIF2α Ser51Ala mutant murine embryonic fibroblasts do not form SGs even after severe heat shock. These results suggest that mammals evolved alternative mechanisms for dealing with thermal stress.  相似文献   

8.
9.
In the present study, we identified and characterized two small heat shock protein genes from Apis cerana cerana, named AccHsp24.2 and AccHsp23.0. An alignment analysis showed that AccHsp24.2 and AccHsp23.0 share high similarity with other members of the α-crystallin/sHSP family, all of which contain the conserved α-crystallin domain. The recombinant AccHsp24.2 and AccHsp23.0 proteins were shown to have molecular chaperone activity by the malate dehydrogenase thermal aggregation assay. Three heat shock elements were detected in the 5′-flanking region of AccHsp24.2 and eleven in AccHsp23.0, and two Drosophila Broad-Complex genes for ecdysone steroid response sites were found in each of the genes. The presence of these elements suggests that the expression of these genes might be regulated by heat shock and ecdysone, which was confirmed by quantitative RT-PCR (RT-qPCR). The results revealed that the expression of the two genes could be induced by cold shock (4 °C) and heat shock (37 °C and 43 °C) in an analogous manner, and AccHsp24.2 was more susceptible than AccHsp23.0. In addition, the expression of the two genes was induced by high concentrations of ecdysone in vitro and in vivo. The accumulation of AccHsp24.2 and AccHsp23.0 mRNA was also detected in different developmental stages and tissues. In spite of the differential expression at the same stage, these genes shared similar developmental patterns, suggesting that they are regulated by similar mechanisms.  相似文献   

10.
Topical application of fenoxycarb (1 μg per animal) at 129 or 132 h of the fifth instar larvae of the silkworm, Bombyx mori, did not induce morphological abnormalities in the pupal stage, but these animals became dauer (permanent) pupae. This condition of B. mori and the endocrine events leading to permanent pupae are discussed in this work. Application of fenoxycarb at 132 h of the fifth instar elicited a high ecdysteroid titre in the pharate pupal stage and a steadily high ecdysteroid titre in the pupal stage. The fenoxycarb-induced permanent pupae had non-degenerating prothoracic glands that secreted low amounts of ecdysteroid and did not respond to recombinant prothoracicotropic hormone (rPTTH) late in the pupal stage. The Bombyx PTTH titre in the haemolymph, determined by a time-resolved fluoroimmunoassay, was lower than that of controls at the time of pupal ecdysis, but higher than controls later in the pupal stage in fenoxycarb-treated animals. After application of fenoxycarb, its haemolymph level, measured by ELISA, reached a peak at pupal ecdysis, then remained low. These results suggest that the fenoxycarb-mediated induction of permanent pupae is only partially a brain-centred phenomenon. It also involves alterations in the hormonal interplay that govern both the initiation of pupal-adult differentiation and changes in the steroidogenic pathway of the prothoracic glands of B. mori.  相似文献   

11.
In this study, we isolated two reeler cDNAs from bacteria-challenged larval fat bodies of the silkworm, Bombyx mori. A reeler domain spanned most of the coding regions of these two cDNAs, and their expression patterns were different in B. mori larval tissues. The reeler1 gene was strongly induced by Escherichia coli K12 and Bacillus subtilis in B. mori larval hemocytes, fat bodies and midguts, but reeler2 was expressed at extremely low levels in these tissues. We focused on the reeler1 gene for functional analysis. Interference by double-stranded reeler1 RNA in vivo led to reduced nodule formation in bacteria-injected larvae, while the injection of recombinant Reeler1 promoted nodule formation in reeler1 gene-silenced larvae, indicating that Reeler1 is involved in the nodulation response. Knockdown of the reeler1 gene significantly decreased phenoloxidase activity in bacteria-challenged larval hemolymph, while injection of recombinant Reeler1 enhanced phenoloxidase activity, suggesting that Reeler1 is involved in the prophenoloxidase activation cascade. Our results provide new mechanistic evidence about the melanization cascade in the insect immunity.  相似文献   

12.
The silkmoth Bombyx mori is the main producer of silk worldwide and has furthermore become a model organism in biological research, especially concerning chemical communication. However, the impact domestication might have had on the silkmoth''s olfactory sense has not yet been investigated. Here, we show that the pheromone detection system in B. mori males when compared with their wild ancestors Bombyx mandarina seems to have been preserved, while the perception of environmental odorants in both sexes of domesticated silkmoths has been degraded. In females, this physiological impairment was mirrored by a clear reduction in olfactory sensillum numbers. Neurophysiological experiments with hybrids between wild and domesticated silkmoths suggest that the female W sex chromosome, so far known to have the sole function of determining femaleness, might be involved in the detection of environmental odorants. Moreover, the coding of odorants in the brain, which is usually similar among closely related moths, differs strikingly between B. mori and B. mandarina females. These results indicate that domestication has had a strong impact on odour detection and processing in the olfactory model species B. mori.  相似文献   

13.
14.
We have constructed a linkage map for the peppered moth (Biston betularia), the classical ecological genetics model of industrial melanism, aimed both at localizing the network of loci controlling melanism and making inferences about chromosome dynamics. The linkage map, which is based primarily on amplified fragment length polymorphisms (AFLPs) and genes, consists of 31 linkage groups (LGs; consistent with the karyotype). Comparison with the evolutionarily distant Bombyx mori suggests that the gene content of chromosomes is highly conserved. Gene order is conserved on the autosomes, but noticeably less so on the Z chromosome, as confirmed by physical mapping using bacterial artificial chromosome fluorescence in situ hybridization (BAC-FISH). Synteny mapping identified three pairs of B. betularia LGs (11/29, 23/30 and 24/31) as being orthologous to three B. mori chromosomes (11, 23 and 24, respectively). A similar finding in an outgroup moth (Plutella xylostella) indicates that the B. mori karyotype (n=28) is a phylogenetically derived state resulting from three chromosome fusions. As with other Lepidoptera, the B. betularia W chromosome consists largely of repetitive sequence, but exceptionally we found a W homolog of a Z-linked gene (laminin A), possibly resulting from ectopic recombination between the sex chromosomes. The B. betularia linkage map, featuring the network of known melanization genes, serves as a resource for melanism research in Lepidoptera. Moreover, its close resemblance to the ancestral lepidopteran karyotype (n=31) makes it a useful reference point for reconstructing chromosome dynamic events and ancestral genome architectures. Our study highlights the unusual evolutionary stability of lepidopteran autosomes; in contrast, higher rates of intrachromosomal rearrangements support a special role of the Z chromosome in adaptive evolution and speciation.  相似文献   

15.
The Domesticated silkworm, Bombyx mori, an economically important insect has been used as a lepidopteran molecular model next only to Drosophila. Compared to the genomic information in silkworm, the protein-protein interaction data are limited. Therefore experimentally identified PPI maps from five model organisms such as E.coli, C.elegans, D.melanogaster, H. sapiens, S. cerevisiae were used to infer the PPI network of silkworm using the well-recognized Interlog based method. Among the 14623 silkworm proteins, 7736 protein-protein interaction pairs were predicted which include 2700 unique proteins of the silkworms. Using the iPfam interaction domains and the gene expression data, these predictions were validated. In that 625 PPI pairs of predicted network were associated with the iPfam domain-domain interactions and the random network has average of 9. In the gene expression method, the average PCC value of the predicted network and random network was 0.29 and 0.23100±0.00042 respectively. It reveals that the predicted PPI networks of silkworm are highly significant and reliable. This is the first PPI network for the silkworm which will provide a framework for deciphering the cellular processes governing key metabolic pathways in the silkworm, Bombyx mori and available at SilkPPI (http://210.212.197.30/SilkPPI/).  相似文献   

16.
17.
18.
Basal thermotolerance is very important for plant growth and development when plants are subjected to heat stress. However, little is known about the functional mechanism of gibberellins (GAs) in the basal thermotolerance of plants. In the present work, we provide molecular evidence that a member of the gene family encoding the GA-stimulated Arabidopsis (GASA) peptides, namely GASA5, is involved in the regulation of seedling thermotolerance. The GASA5-overexpressing plants displayed a weak thermotolerance, with a faster cotyledon-yellowing rate, lower seedling-survival rate, and slower hypocotyl elongation, in comparison to the wild-type and GASA5 null-mutant (gasa5-1) plants, after heat-stress treatment. The short-hypocotyl phenotype of GASA5-overexpressing plants could be rescued by the exogenous application of salicylic acid (SA), the hormone found to protect plants from heat stress-induced damage. GASA5 expression was inhibited by heat stress but unaffected by the application of exogenous SA. However, expression of the gene encoding the noexpresser of PR genes 1 (NPR1), a key component of the SA-signaling pathway, was downregulated by GASA5 overexpression. Importantly, when different GASA5-genotype plants were treated with heat stress, several genes encoding heat-shock proteins, including HSP101, HSP70B, HSP90.1, HSP17.6-C1, and HSP60, were inhibited by GASA5 overexpression. Meanwhile, hydrogen peroxide was accumulated at high levels in heat stress-treated GASA5-overexpressing plants. These results suggest that the Arabidopsis GASA5 gene acts as a negative regulator in thermotolerance by regulating both SA signaling and heat shock-protein accumulation.  相似文献   

19.
The response to high temperatures in adults of two cold stenothermal cave-dwelling leptodirins, Neobathyscia mancinii and Neobathyscia pasai (Coleoptera, Cholevidae) was evaluated by determinating levels of gene expression of two members of the family of heat shock proteins 70 kDa by qPCR. In both species, hsc70 mRNA level was constant with increasing temperature, whereas a significant increase in the inducible member (hsp70) mRNA was observed, higher in N. pasai. This difference could be due to their in-cave distribution: N. pasai colonizes the cave entrance where the temperature is more variable than the internal part where N. mancinii is confined. These results demonstrated for the first time the occurrence of a heat shock response in troglobite insects and suggest the correlation between the intensity of this response and the adaptation to the cave environment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号