首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
MicroRNAs (miRNAs) are a class of non-coding RNAs known to play important regulatory roles through targets, which can affect human cell proliferation, differentiation, and metabolism. Overlaps between different miRNA target prediction algorithms (MTPAs) are small, which limit the understanding of miRNA's biological functions. However, the overlaps increase on functional levels, such as Gene Ontology (GO), Protein–Protein Interaction Network (PPIN) and pathways. Here, we performed prioritization on existing predicted target sets for each miRNA by considering all the possible combinations of 7 functional levels. After analyzing the results of both single and multiple functional levels, we found that functional combination strategies including pathways and GO performed better in the prioritization of human miRNA target. The combination which performed best was “Pathway + GO BP + GO MF + GO CC + Target + PPIN”. For the prioritized result of this combination, the valid target had top ranking, and our method performed better than the MTPAs after comparison adopting the validated ranking levels. Top genes in ranking lists generated by this strategy were either validated by experiments or share same functions with the corresponding miRNA/its validated genes in disease related biological processes.  相似文献   

3.
4.
AMP-activated protein kinase (AMPK) has been proposed to act as a key energy sensor mediating the metabolism of glucose and lipids, and pharmacological activation of AMPK may provide a new strategy for the management of type 2 diabetes. MicroRNAs (miRNAs) are a group of endogenous noncoding RNA that play important roles in many biological processes including energy metabolism. Whether miRNAs mediate AMPK action in regulating metabolic process is not clear. In this study, 0.5 mM 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) was added to increase activation of AMPK in 8 week old C57BL/6 mice primary hepatocytes. MiRNA microarray was performed to compare the miRNA expression profiles of hepatocytes treated with or without AICAR. We discovered that 41 miRNAs were significantly altered in AICAR-treated sample (fold change: > 2) compared with untreated control sample. Among them, 19 miRNAs were upregulated. MiRNA targets were predicted by TargetScan. Further bioinformatic analysis indicated that these predicted targets might be mainly involved in pathways of cellular metabolism and tumor pathogenesis. FUNDO analysis suggested that these predicted targets were enriched in cancer, diabetes mellitus, hypertension, obesity and heart failure (P < 0.01). A series of miRNAs could be regulated by the activation of AMPK and might mediate the action of AMPK during metabolic processes and tumor pathogenesis. Predicted target genes discovered in this study and pathway analysis provide new insights into hepatic metabolism and tumor pathogenesis regulated by AMPK signaling and clues to the possible molecular mechanism underlying the effect of AMPK.  相似文献   

5.
The unicellular green alga Chlamydomonas reinhardtii has a haplontic life cycle, and forms diploid zygotes for reproduction. The zygospore, a sporulating zygote, begins germination in response to light signals, generating haploid progenies and inducing several cell-biological events; e.g., DNA synthesis and meiotic division, successively. Their regulatory mechanisms remain largely unknown, so we focused on the early stages of germination and analyzed the dynamics of gene expression associated with the germination process. The gene expression levels of zygospores at 1 and 6 h after light exposure were analyzed by a next-generation sequencing platform, the 454 GS Junior. At 6 h, the photosynthesis pathway, including its antenna proteins and two methionine metabolism-related genes (methionine synthase and sulfite reductase), were up-regulated compared to 1 h after light exposure. Meanwhile, three uncharacterized genes that contained an antibiotic biosynthesis monooxygenase domain and an HSP20/alpha crystallin family protein were specifically expressed at 1 h after light exposure. These gene expressions were also verified by quantitative real-time PCR analysis. These results suggest that the photosynthesis and methionine synthesis pathways, both of which occur in the chloroplast, are activated in zygospores at around 6 h after light exposure, and that some polyketides and/or a small heat shock protein may be related to the initiation of zygospore germination.  相似文献   

6.
The sucrose-induced resumption of cell cycle in the Vicia faba root meristem cells, blocked in two principal control points PCP1/2 by carbohydrate starvation, occurs after 12 h of metabolic regeneration comprising increased activity of sucrose synthase (SuSy) and hexokinase (HK) as well as starch grain and cell wall matrix polysaccharide biosynthesis. Okadaic acid (OA), the specific protein phosphatase 1/2A inhibitor, supplied at the beginning of the recovery period (0–3 h) completely blocks these processes, making cell cycle resumption impossible. On the other hand, when added at the end (9–12 h), OA has a weak inhibitory effect. The aim of these studies was: (1) to establish how sucrose is transported into the cells and whether the above-mentioned effects are correlated with the intensity of its uptake at the beginning and at the end of the metabolic regeneration; and (2) to determine whether OA, blocking sucrose metabolism, also interferes with the process of sucrose uptake and distribution. The level of [3H]sucrose uptake was measured by liquid scintillation counting while sugar distribution was analyzed using microautoradiography and electron microscopy. The results showed that sucrose entered the meristematic cells along symplastic or apoplastic pathways and, to a lesser extent, through endocytosis. The cytoplasmic compartments (endoplasmic reticulum, vacuoles, plastids) and the nucleus were labeled. The intensity of [3H]sucrose uptake was nearly 2-fold lower during the initial than during the final period of metabolic regeneration. OA inhibited the apoplastic pathway of radioactive molecule uptake and its distribution between cell compartments, implicating PP1/2A involvement in the regulation of this transport.  相似文献   

7.
8.
9.
We investigated whether pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) ameliorates kidney injury after ischemia/reperfusion (IR) by modulating Toll-like receptor (TLR)-associated signaling pathways. Male C57BL/6 mice were subjected to bilateral renal ischemia for 45 min. PACAP38, 20 μg in 100 μl of saline, was administered i.p. at 24 and 48 h after IR, and mice were euthanized at 72 h. In IR mice, PACAP38 maintained serum creatinine near control levels (0.81 ± 0.08 vs. 0.69 ± 0.17 mg/dl in controls, p = NS, vs. 1.8 ± 0.03 in saline-treated IR mice, p < 0.01) and significantly reduced the expression of kidney injury biomarkers. PACAP38 significantly reduced the levels of apoptosis and neutrophil infiltration, and protected against tubular damage. With PCR arrays, 59 of 83 TLR-related genes significantly changed their expression after IR. TLR2 increased 162 fold, followed by Fas-associated death domain (37 fold) and TLR6 (24 fold), while ubiquitin-conjugating enzyme E2 variant 1 (UBE2V1) decreased 55 fold. PACAP38 given 24 and 48 h after IR injury significantly reversed these changes in 56 genes, including TLR2, TLR3, TLR4, TLR6, and genes in the NF-κB pathways. The alterations in TLR2, TLR3, TLR6, and UBE2V1 were confirmed by RT-PCR. After IR, PACAP38 also suppressed protein levels of TLR-associated cytokines. PACAP38 reversed the changes in IR-activated TLR-associated NF-κB signaling pathways even when treatment was delayed 24 h. Therefore, PACAP38 could be an effective therapeutic for unexpected IR-mediated renal injury. The prominently IR-induced TLR-related genes identified in this study could be novel drug targets.  相似文献   

10.
11.
In the present study, the expression of fourteen genes involved in various signal transduction pathways was examined in young soybean (Glycine max) seedlings exposed to cadmium at two concentrations (10 mg L−1 and 25 mg L−1) for short time periods (3, 6 and 24 h). The results show that cadmium causes induction of genes encoding proteins involved in ethylene and polyamines metabolism, nitric oxide generation, MAPK cascades and regulation of other genes’ expression. The bioinformatic analysis of promoter sequences of Cd-inducible genes revealed that their promoters possess several regulative motifs associated with the plant response to stress factors and abscisic acid and ethylene signaling. The involvement of ethylene in the response of soybean seedlings to cadmium stress was further confirmed by the real-time analysis of ethylene production during 24 h of CdCl2 treatment. The role of the described signaling elements in transduction of the cadmium signal in young soybean seedlings is discussed.  相似文献   

12.
13.
Type 2 diabetes (T2D) and coronary artery disease (CAD) are closely related chronic diseases with high prevalence and morbidity. However, a comprehensive comparison of the two diseases is lacking. Recent genome-wide association studies (GWAS) have identified a handful of single nucleotide polymorphisms (SNPs) that are significantly associated with the risk of T2D and CAD. These most significant findings may help interpret the pathogenesis of T2D and CAD. However, tremendous results from these GWAS are ignored. Here we revisited the raw datasets of these GWAS and performed an integrated gene network analysis to unveil the relationship between T2D and CAD by combining multiple datasets including protein–protein interaction (PPI) database, publication libraries, and pathway datasets. Our results showed that majority of genes were involved in the first module (1122 genes in T2D and 895 in CAD). Four pathways were found to be common in both T2D and CAD, including regulation of actin cytoskeleton, calcium signaling pathway, MAPK signaling pathway and focal adhesion (all P < 0.00001). MAX which was involved in small cell lung cancer pathway was a hub gene unique to T2D (OR = 1.2, P = 0.006) but not in CAD. In contrast, three hub genes including PLEKHG5 (T2D: OR = 1, P = 1; CAD: OR = 1.12, P = 0.006), TIAM1 (T2D: OR = 1, P = 1; CAD: OR = 1.48, P = 0.004) and AKAP13 (T2D: OR = 1, P = 1; CAD: OR = 1.38, P = 0.001) were hub genes unique to CAD. Moreover, for some hub genes (such as SMAD3) that were susceptible to both T2D and CAD, their associated polymorphisms were unique to each of the two diseases. Our findings might provide a landscape of the relationship between T2D and CAD.  相似文献   

14.
15.
MicroRNAs (miRNAs) have been implicated in the process of aging in many model organisms, such as Caenorhabditis elegans, and in many organs, such as the mouse lung and human epididymis. However, the role of miRNAs in the thymus tissues of the aging mouse remains unclear. To address this question, we investigated the miRNA expression profiles in the thymuses of 1-, 10- and 19-month-old mice using miRNA array and qRT-PCR assays. A total of 223 mouse miRNAs were screened, and the expression levels of those miRNAs exhibited gradual increases and decreases over the course of thymus aging. Fifty miRNAs in the 10-month-old thymus and 81 miRNAs in the 19-month-old thymus were defined as differentially expressed miRNAs (p < 0.05) in comparison with their levels in the 1-month-old mouse, and approximately one-third of these miRNAs were grouped within 11 miRNA clusters. Each miRNA cluster contained 2 to 5 miRNA genes, and most of the cluster members displayed similar expression patterns, being either increased or decreased. In addition, Ingenuity Pathway Analysis (IPA) software and the IPA database were used to analyze the 12 miRNAs that exhibited significant expression changes, revealing that as many as 15 pathways may be involved. Thus, our current study determined the expression profiles of miRNAs in the mouse thymus during the process of aging. The results suggested that these miRNAs could become meaningful biomarkers for studying thymus aging and that the aging-related alternations in miRNA expression may be involved in the regulation of cell proliferation, apoptosis, development and carcinogenesis/tumorigenesis.  相似文献   

16.
Kashin–Beck disease (KBD) is a serious osteoarthropathia, mainly characterized by excessive chondrocyte necrosis and apoptosis. The molecular signaling pathways underlying KBD excessive chondrocyte apoptosis remain unclear, leading to a lack of effective medical interventions now. To clarify whether expression quantitative trait loci (eQTLs) contribute to excessive chondrocyte apoptosis of Kashin–Beck disease through regulating the expression of apoptosis pathways. We conducted a genome-wide eQTLs based pathway association analysis of KBD using Affymetrix Human SNP Array 6.0 in 1717 Chinese Han subjects. PLINK software was used for genome-wide association study (GWAS) of KBD. A modified gene set enrichment algorithm was applied for pathway association analysis based on GWAS results. The KBD-associated pathways were compared with abnormally expressed pathways in KBD articular cartilage, identified by microarray study of KBD. We identified 4 eQTLs pathways, which were not only significantly associated with KBD, but also abnormally expressed in KBD articular cartilage, including REACTOME_INTRINSIC_PATHWAY_FOR_APOPTOSIS (P = 0.008), MAHAJAN _RESPONSE_TO_IL1A_UP (P = 0.010), KEGG_PEROXISOME (P = 0.005) and MARKS_HDAC_TARGETS_UP (P = 0.006). Our results suggest that eQTLs contributed to KBD excessive chondrocyte apoptosis through regulating the expression of apoptosis related pathways. This study provides novel insight into the genetic susceptibility and therapeutic rationale of KBD.  相似文献   

17.
The protein nucleobindin-2 (NUCB2) was identified over a decade ago and recently raised great interest as its derived peptide nesfatin-1 was shown to reduce food intake and body weight in rodents. However, the involvement of NUCB2 in feeding behavior has not well been studied in fish. In the present study, we characterized the structure, distribution, and meal responsive of NUCB2A/nesfatin-1 in Ya-fish (Schizothorax prenanti) for the first time. The full length cDNA of Ya-fish was 2140 base pair (bp), which encoded a polypeptide of 487 amino acid residues including a 23 amino acid signal peptide. A high conservation in NUCB2 sequences was found in vertebrates, however the proposed propeptide cleavage site (Arg–Arg) conserved among other species is not present in Ya-fish NUCB2A sequence. Tissue distribution analysis revealed that Ya-fish NUCB2A mRNA was ubiquitously expressed in all test tissues, and abundant expression was detected in several regions including the hypothalamus, hepatopancreas, ovary and intestines. NUCB2A mRNA expression respond to feeding status change may vary and be tissue specific. NUCB2A mRNA levels significantly increased (P < 0.05) in the hypothalamus and intestines after feeding and substantially decreased (P < 0.01) during a week food deprivation in the hypothalamus. Meanwhile, NUCB2A mRNA in the hepatopancreas was significantly elevated (P < 0.001) during food deprivation, and a similar increase was also found after short-time fasting. This points toward a potential hepatopancreas specific local role for NUCB2A in the regulation of metabolism during food deprivation. Collectively, these results provide the molecular and functional evidence to support potential anorectic and metabolic roles for NUCB2A in Ya-fish.  相似文献   

18.
Fecundity improvement is one of the most important objectives for goat breeders as it greatly increases production efficiency. To investigate the genes associated with litter sizes in the Anhui White goat (AWG), gene expression differences in the ovaries of uniparous and multiparous AWG were assessed using the RNA-Seq (Quantification) method. This analysis generated 6,027,714 and 5,884,062 clean reads in uniparous and multiparous libraries, respectively. A total of 2201 differentially expressed genes (DEGs) were thereby identified (FDR ≤ 0.001, |log2Ratio| ≥ 1). There were 1583 up-regulated and 618 down-regulated genes in the multiparous samples compared with the uniparous samples. A large number of these DEGs were related to the terms cellular process, cell & cell part and binding. Twelve genes which may be associated with the high prolificacy of AWG were identified using a bioinformatic screen. In addition, pathway analysis revealed that these DEGs were significantly enriched in 11 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including ECM–receptor interactions, focal adhesion, and regulation of the actin cytoskeleton among others. This suggested a role for these pathways in the prolificacy of AWG. These results provide a list of new candidate genes for goat prolificacy.  相似文献   

19.
The complete mitogenomes of Asiotmethis zacharjini, Filchnerella helanshanensis and Pseudotmethis rubimarginis are 15,660 bp, 15,657 bp and 15,661 bp in size, respectively. All three mitogenomes contain a standard set of 13 protein - coding genes, 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and an A + T-rich region in the same order as those of the other analysed caeliferan species, including the rearrangement of trnAsp and trnLys. The putative initiation codon for the cox1 gene in the three species is CCG. The long polythymine stretch (T-stretch) in the A + T-rich region of the three species is not adjacent to the trnIle but inside the stem–loop sequence in the majority strand. The mitogenomes of F. helanshanensis and P. rubimarginis have higher overall similarities. The characterization of the three mitogenomes will enrich our knowledge on the Pamphagidae mitogenome. The phylogenetic analyses indicated that within the Caelifera, Pyrgomorphoidea is a sister group to Acridoidea. The species from the Pamphagidae form a monophyletic group, as is the case for Acrididae. Furthermore, the two families cluster as sister groups, supporting the monophyly of Acridoidea. The relationships among eight acridid subfamilies were (Cyrtacanthacridinae + (Calliptaminae + (Catantopinae + (Oxyinae + (Melanopline + (Acridinae + (Oedipodinae + Gomphocerinae))))))).  相似文献   

20.
Endometriosis is a complex disorder of the female reproductive system where endometrial tissue embeds and grows at extrauterine location leading to inflammation and pain. Hundreds of polymorphisms in several genes have been studied as probable risk factors of this debilitating disease. Bioinformatics tools have come a long way in augmenting the search for putative functional polymorphisms in human diseases. In this study we have explored 16 genes involved in the detoxification of xenobiotic chemicals that are implicated in endometriosis by utilising publically available programs like SIFT, Polyphen, Panther, FastSNP, SNPeffect and PhosSNP. The variations among different ethnic populations of the SNPs were studied. We then calculated the extent to which bioinformatics based predictions are concurrent with real world epidemiological, genotyping studies using a set of SNPs that have been studied in endometriosis case–control studies. Our study shows that there is a significant positive correlation (r = 0.569, p < 0.005) between the summary of the predicted scores taken from 4 different servers and the odds ratio found from epidemiological studies. This report has identified and catalogued various deleterious SNPs that could be important in endometriosis and could aid in further analysis by in vitro and in vivo methods for the better understanding of the disease pathophysiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号