首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 5 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
In the previous studies, we reported that carnosic acid (CA) and carnosol (CS) originating from rosemary protected cortical neurons by activating the Keap1/Nrf2 pathway, which activation was initiated by S-alkylation of the critical cysteine thiol of the Keap1 protein by the “electrophilic” quinone-type of CA or CS. Here, we found that CA and CS inhibited the in vitro differentiation of mouse preadipocytes, 3T3-L1 cells, into adipocytes. In contrast, other physiologically-active and rosemary-originated compounds were completely negative. These actions seemed to be mediated by activation of the antioxidant-response element (ARE) and induction of phase2 enzymes. This estimation is justified by our present findings that only CA and CS among rosemary-originated compounds significantly activated the ARE and induced the phase2 enzymes. Next, we performed cDNA microarray analysis in order to identify the gene(s) responsible for these biological actions and found that phase2 enzymes (Gsta2, Gclc, Abcc4, and Abcc1), all of which are involved in the metabolism of glutathione (GSH), constituted 4 of the top 5 CA-induced genes. Furthermore, CA and CS, but not the other compounds tested, significantly increased the intracellular level of total GSH. Thus, we propose that the stimulation of GSH metabolism may be a critical step for the inhibition of adipocyte differentiation in 3T3-L1 cells and suggest that pro-electrophilic compounds such as CA and CS may be potential drugs against obesity-related diseases.  相似文献   

9.
Ribosomal protein s15a (RPS15A) is a highly conserved protein that promotes mRNA/ribosome interactions early in translation. Recent evidence showed that RPS15A could stimulate growth in yeast, plant and human lung carcinoma. Here we report that RPS15A knockdown could inhibit hepatic cancer cell growth in vitro. When transduced with shRPS15A-containing lentivirus, we observed inhibited cell proliferation and impaired colony formation in both HepG2 and Bel7404 cells. Furthermore, cell cycle analysis showed that HepG2 cells were arrested at the G0/G1 phase when transduced with Lv-shRPS15A. In conclusion, our findings provide for the first time the biological effects of RPS15A in hepatic cancer cell growth. RPS15A may play a prominent role in heptocarcinogenesis and serve as a potential therapeutic target in hepatocellular carcinoma.  相似文献   

10.
NOB1 (NIN1/RPN12 binding protein 1 homolog), a ribosome assembly factor, is thought to be essential for the processing of the 20S pre-rRNA into the mature 18S rRNA. It is also reported to participate in proteasome biogenesis. However, the contribution of NOB1 gene dysfunction to the pathology of human diseases, such as gliomas, has not been addressed. Here, we detected expression levels of NOB1 mRNA in U251, U87, U373, and A172 cells by quantitative real-time PCR. To analyze the expression levels of NOB1 protein in glioma tissues, we performed immunohistochemistry on 56 pathologically confirmed glioma samples (7 Grade I cases, 19 Grade II cases, 16 Grade III cases, and 14 Grade IV cases). A recombinant lentivirus expressing NOB1 short hairpin RNA (shNOB1) was constructed and infected into U251 and U87-MG human glioma cells. We found that NOB1 mRNA was expressed in all four cell lines. The expression level of the NOB1 protein was significantly higher in high-grade gliomas than in low-grade gliomas. Knockdown of the NOB1 gene resulted in suppression of the proliferation and the colony-forming abilities of U251 and U87-MG cells, cell cycle arrest during the G0/G1 phase, and a significant enhancement of cell apoptosis. In addition, cell migration was significantly suppressed in U251 and U87-MG cells that were infected with the shNOB1-expressing lentivirus. These results suggest that NOB1 promotes glioma cell growth and migration and could be a candidate for molecular targeting during gene therapy treatments of glioma.  相似文献   

11.
12.
13.
14.
Due to its antiapoptotic action, derivatives of the lipid mediator lysophosphatidic acid (LPA) provide potential therapeutic utility in diseases associated with programmed cell death. Apoptosis is one of the major pathophysiological processes elicited by radiation injury to the organism. Consequently, therapeutic explorations applying compounds that mimic the antiapoptotic action of LPA have begun. Here we present a brief account of our decade-long drug discovery effort aimed at developing LPA mimics with a special focus on specific agonists of the LPA2 receptor subtype, which was found to be highly effective in protecting cells from apoptosis. We describe new evidence that 2-((3-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)propyl)thio)benzoic acid (GRI977143), a prototypic nonlipid agonist specific to the LPA2 receptor subtype, rescues apoptotically condemned cells in vitro and in vivo from injury caused by high-dose γ-irradiation. GRI977143 shows the features of a radiomitigator because it is effective in rescuing the lives of mice from deadly levels of radiation when administered 24 h after radiation exposure. Our findings suggest that by specifically activating LPA2 receptors GRI977143 activates the ERK1/2 prosurvival pathway, effectively reduces Bax translocation to the mitochondrion, attenuates the activation of initiator and effector caspases, reduces DNA fragmentation, and inhibits PARP-1 cleavage associated with γ-irradiation-induced apoptosis. GRI977143 also inhibits bystander apoptosis elicited by soluble proapoptotic mediators produced by irradiated cells. Thus, GRI977143 can serve as a prototype scaffold for lead optimization paving the way to more potent analogs amenable for therapeutic exploration. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号