首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The survey of simple sequence repeats (SSRs) has been extensively made in eukaryotes and prokaryotes. However, its still rare in viruses. Thus, we undertook a survey of SSRs in Human Immunodeficiency Virus Type 1 (HIV-1) which is an excellent system to study evolution and roles of SSRs in viruses. Distribution of SSRs was examined in 81 completed HIV-1 genome sequences which come from 34 different countries or districts over 6 continents. In these surveyed sequences, although relative abundance and relative density exhibit very high similarity, some of these sequences show different preference for most common SSRs and longest SSRs. Our results suggest proportion of various repeat types might be related to genome stability.  相似文献   

4.
5.
6.
7.
Here, we confirm and extend our previous findings on human immunodeficiency virus type 1 (HIV-1) envelope glycoproteinN-acetylglucosaminyl binding properties. We show the occurrence of saturable, temperature, pH, and calcium dependent carbohydrate-specific interactions between recombinant precursor gp160 (rgp160) and two affinity matrices:d-mannose-divinylsulfone-agarose, and natural glycoprotein, fetuin, also coupled to agarose. Binding of rgp160 to the matrices was inhibited by soluble mannosyl derivatives, -d-Man17-BSA and mannan, by -d-GlcNAc47-BSA and by glycopeptides from Pronase-treated porcine thyroglobulin, which produces oligomannose and complex N-linked glycans. Glycopeptides from Endoglycosidase H-treated thyroglobulin partially inhibited rgp160 binding, as did the asialo-agalacto-tetraantennary precursor oligosaccharide of human 1-acid glycoprotein for binding to fetuin-agarose. -d-Glucan and -d-Gal17-BSA had no or only limited effect. Also, surface unit rgp120 specifically interacted with fetuin-agarose and soluble fetuin, but in the latter case with a twofold reduced affinity relative to rgp160. After affinity chromatography, rgp160 was specifically retained by the two matrices and eluted by mannan in both cases, while rgp120 was not retained by fetuin-agarose but only eluted as a significantly retarded peak, which confirms its specific but weak interaction. Thus, rgp160 interacts with both oligomannose type, and the mannosyl core of complex type N-linked glycans, and its gp120 region plays a role in this interaction. Because fetuin and asialofetuin inhibit to nearly the same extent, the binding of rgp160 or rgp120 to fetuin-agarose, interaction with sialic acid or -d-galactosyl structures of complex N- or O-linked glycans can be ruled out. Specific rgp160 and rgp120 binding to ap-aminophenyl--d-GlcNAc-agarose matrix, which was inhibited by -d-GlcNAc47-BSA and by fetuin, confirms that HIV-1 envelope glycoproteins can also specifically interact with theN-acetylglucosaminyl core of oligosaccharide structures.  相似文献   

8.
9.
HIV-1(LAV-1) particles were collected by ultracentrifugation, treated with subtilisin, and then purified by Sepharose CL-4B column chromatography to remove microvesicles. The lysate of the purified human immunodeficiency virus type 1 (HIV-1) particles was subjected to two-dimensional (2D) gel electrophoresis and stained, and the stained spots were excised and digested with trypsin. The resulting peptide fragments were characterized by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Twenty-five proteins were identified as the proteins inside the virion and the acid-labile formyl group of an amino terminal proline residue of HIV-1(LAV-1) p24(gag) was determined by MALDI-TOF MS before and after weak-acid treatments (0.6 N hydrochloric acid) and confirmed by post-source decay (PSD) of the N-formylated N-terminal tryptic peptide (N-formylated Pro(1)-Arg(18)). The role of formylation has been unclear so far, but it is surmised that the acid-labile formylation of HIV-1(LAV-1) p24(gag) may play a critical role in the formation of the HIV-1 core for conferring HIV-1 infectivity.  相似文献   

10.
11.
12.
13.
We developed an efficient system of site-directed mutagenesis for the envelope (env) gene of human immunodeficiency virus type 1 (HIV-1). To make a template plasmid for mutagenesis, pS+B/MluI, two independent selection markers, i.e. a unique restriction site, MluI, and an in-frame termination codon, were introduced into the region encoding the V3 domain of the env gene of an HIV-1 strain, NL4-3, which had been cloned in the pUC118 plasmid. When the env gene of the pS+B/MluI plasmid was mutated successfully using mutagenic primers such as synthetic oligonucleotides or PCR-amplified DNA fragments longer than 1.5 kbp, the plasmids became resistant to digestion with MluI and competent env genes were formed by suppression of the in-frame termination. Various site-directed mutants of the env gene of HIV-1 were accurately constructed in a short time even in the absence of proper restriction sites by this system. The system of site-directed mutagenesis we reported here will be a useful method to analyze the functions of variable genes like the env gene of HIV-1 precisely and rapidly.  相似文献   

14.
15.
16.
17.
Geleophysic dysplasia (GD) is a rare disorder characterized by severe short stature, short hands and feet, limited joint mobility, skin thickening, characteristic facial features (e.g., a “happy” face), and cardiac valvular disorders that often result in an early death. The genes ADAMTSL2 (a disintegrin-like and metalloprotease with thrombospondin type 1 motif-like 2) and FBN1 (fibrillin 1) were recently identified as causative genes for GD. Here, we describe a 10-year-old Japanese female with GD who was born to non-consanguineous parents. At the age of 11 months, she was referred to our hospital because of very short stature for her age (− 4.4 standard deviations of the age-matched value) and a “happy” face with full cheeks, a shortened nose, hypertelorism, and a long and flat philtrum, characteristic of GD. Her hands and feet were small, her skin was thickened, and her joint mobility was generally limited. She had cardiac valvular disorders and history of recurrent respiratory failure. Mutation analysis revealed no abnormalities in ADAMTSL2. However, analysis of FBN1 revealed a novel heterozygous mutation (c.5161T > T/G) in exon 41, which encodes transforming growth factor-β-binding protein-like domain 5 (TB5). GD is an extremely rare disorder and, to our knowledge, only one case of GD with an FBN1 mutation has been reported in Japan. Similar to the previously reported cases of GD, the mutation in the current patient was located in the TB5 domain, which suggests that abnormalities in this domain of FBN1 are responsible for GD.  相似文献   

18.
19.
20.
pea-MADS4 (PEAM4) regulates floral morphology in Pisum sativum L., however, its molecular mechanisms still remain unclear. Virus-induced gene silencing (VIGS) is a recently developed reverse genetic approach that facilities an easier and more rapid study of gene functions. In this study, the PEAM4 gene was effectively silenced by VIGS using a pea early browning virus (PEBV) in wild type pea JI992. The infected plants showed abnormal phenotypes, as the floral organs, especially the sepals and petals changed in both size and shape, which made the corolla less closed. The petals changed in morphology and internal symmetry with, the stamens reduced and carpel dehisced. Larger sepals and longer tendrils with small cauline leaves appeared, with some sepals turning into bracts, and secondary inflorescences with fused floral organs were formed, indicating a flower-to-inflorescence change. The infected plants also displayed a delayed and prolonged flowering time. The PEAM4-VIGS plants with altered floral morphology were similar to the pim (proliferating inflorescence meristem) mutant and also mimicked the phenotypes of ap1 mutants in Arabidopsis. The expression pattern of the homologous genes PsSOC1a and PsSVP, which were involved in flowering time and florescence morphological control downstream of PEAM4, were analyzed by real-time RT-PCR and mRNA in situ hybridization. PsSOC1a and PsSVP were ectopically expressed and enhanced in the floral meristems from PEAM4-silenced plants. Our data suggests that PEAM4 may have a similar molecular mechanism as AtAP1, which inhibits the expression of PsSOC1a and PsSVP in the floral meristem from the early stages of flower development. As such, in this way PEAM4 plays a crucial role in maintaining floral organ identity and flower development in pea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号