首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D L Nuss  Y Furuichi    G Koch  A J Shatkin 《Cell》1975,6(1):21-27
Extracts prepared from HeLa cells contain an enzymatic activity which cleaves m7G(5')ppp(5')Gm to m7pG and ppGm. The activity exhibits a high degree of substrate specificity and does not cleave G(5')ppp(5')G or the ring opened derivative of m7GpppGm which has lost the positive charge from the N7 position of m7G. m7GpppGm as the 5' terminal structure of intact reovirus mRNA is resistant to attack by the pyrophosphatase activity, but becomes partially sensitive in the 5' terminal fragment consisting of 7-10 nucleotides derived from the same mRNA by T1 RNAase digestion. m7G(5')ppp(5')GmpCp is completely sensitive to cleavage resulting in the release of m7pG without generation of m7GpppGm as an intermediate. These results establish the existence of a 7-methyl guanosine specific pyrophosphatase activity in HeLa cells.  相似文献   

2.
Antibodies highly specific for intact pm7G (7methylguanosine-5'-mono-phosphate) were induced by immunization of rabbits with a pm7G-BSA conjugate. Since the nucleotide is six-fold more stable than m7G (7-methylguanosine) to alkali-catalyzed fission of the imidazole ring, it is a more desirable antigen for obtaining antibodies capable of binding caps on eukaryotic mRNA. UV spectra demonstrated that the nucleotide in the conjugate was predominantly the intact form. Competition radioimmunoassay showed 1) high apparent affinities for pm7G, on the order of 10(-8)M, 2) low competition by the ring-opened form of the homologous hapten (*pm7G), and by m7G, 3) little or no competition by AMP, GMP, CMP, UMP or m6A, and 4) high apparent affinities for m7GpppAm, m7GpppN6MAm, m7GpppGm, m7GpppA.  相似文献   

3.
Although template-active RNA in dry seeds and embryos has attracted widespread interest, there have been no published reports about 5'-terminal "capping" sequences in such RNA. Boro[3H]hydride labeling of periodate-oxidized termini and high performance liquid chromatography of cap oligonucleotides have been used to compare terminal sequences in poly(A)-rich RNA from dry and germinating embryos. As is the case in germinating embryos, poly(A)-rich RNA from dry embryos contains only "type 0" cap sequences, i.e., m7G(5')ppp(5')N, in which m7G is the 7-methylguanosine cap and N is any of the classical ribonucleosides: adenosine (A), guanosine (G), cytidine (C),a nd uridine (U). Striking differences between the cell-free translational capacities of bulk messenger RNA (mRNA) populations from dry and germinating embryos are not reflected in signal differences in their proportions of "type 0" cap structures: in general, there is approximately 40% m7G(5')ppp(5')A, with roughly equivalent amounts of m7G(5')ppp(5')G and m7G(5')ppp(5')C accounting for most of the remaining sequences. The findings with mRNA from dry plant embryos serve to emphasize interesting differences between patterns of methylation in the capped and uncapped RNA molecules in higher plants and animals; the differences have not been previously noted in the literature and are the subject of brief comment in this paper.  相似文献   

4.
5.
Antibodies specific for 7-methylguanosine (m7G) were evaluated for their ability to inhibit the translation of chorion mRNA in a wheat germ, cell-free amino acid incorporating system. Results obtained with antibody concentrations of 0.5--1.5 microM revealed dose-dependent inhibition of [3H]-labeled amino acid incorporation into acid-insoluble radioactivity. Inhibition of translation was attributed to the interaction of anti-m7G antibodies with the 5' termini of chorion mRNAs on the basis that (a) anti-m7G antibodies coupled to Sepharose (anti-m7G-Sepharose) immunospecifically retained 5'-terminal cap structures of chorion mRNAs, i.e., m7G (5')ppp(5')Nm, (b) significant inhibition of translation required a 2-h preincubation of anti-m7G antibodies with mRNA, and (c) similar preincubation periods with anti-m7G antibodies in the presence of the competing nucleoside hapten (m7G) obviated the inhibitory effect of the antibody. The nature of the anti-m7G antibody-mRNA complex was examined by digesting chorion mRNA with nuclease P1 before (predigested) and after (postdigested) immunospecific adsorption to anti-m7G-Sepharose adsorbent. Whereas predigested preparations yielded a single cap structure of the type m7G(5')ppp(5')N, the predominating cap in the postdigested sample was m7G(5')ppp(5')NpNpN. These latter data revealed that the nucleotide sequence adjacent to the cap was not significantly masked by the antibody and suggest the utility of anti-m7G antibody as a site-specific probe.  相似文献   

6.
RNA labeled with [methyl-3H] methionine and [14C]uridine was isolated from the cytoplasm of adenovirus-infected cells and purified by poly(U)-Sepharose chromatography and hybridization to filters containing immobilized adeovirus DNA. Analysis by dimethyl sulfoxide-sucrose gradient sedimentation suggested that the major mRNA species were methylated. 7-Methylguanosine was identified at the 5'-terminus of the advenovirus-specific RNA and could be removed by periodate oxidation and beta-elimination. Structures of the type m7G(5')ppp(5')Nm containing the unusual nucleoside N6, O2'-dimethyladenosine, and smaller amounts of 2'-O-methyladenosine were isolated by DEAE-cellulose chromatography after P1 nuclease digestion of the RNA. Evidence for some 5'-terminal sequences, m7G(5')ppp(5')m6AmpNm, with additional 2'-O-methylribonucleosides was also obtained. A base-methylated nucleoside, N6-methyladenosine, is located within the RNA chain and is released as a mononucleotide by alkali hydrolysis.  相似文献   

7.
Hydrolysis of the following four cap analogs: m7G(5')ppp(5')A, m7G(5')ppp(5')m6A, m7G(5')ppp(5')m2'OG and m7G(5')ppp(5')2'dG catalyzed by homogeneous human Fhit protein and yellow lupin Ap3A hydrolase has been investigated. The hydrolysis products were identified by HPLC analysis and the K(m) and Vmax values calculated based on the data obtained by the fluorimetric method.  相似文献   

8.
Antibodies specific for intact 7-methylguanosine (m7G) were induced in rabbits and mice by immunization with nucleoside-BSA or nucleoside-hemocyanin conjugates. Since m7G undergoes alkali-catalyzed hydrolytic fission of the purine ring, modifications were made in the procedure for conjugation of m7G to proteins. After periodate oxidation, m7G was incubated with protein at pH 9.1 at 4 degrees C for one hour during which the nucleoside was found to be stable. Reduction of the Schiff base was done with t-butylamine borane for 30 minutes, and the conjugated protein was isolated quickly by gel filtration at pH 7.2. Both rabbits and mice produced antibodies that readily distinguished between the intact and hydrolyzed m7G. Antibody specificity depended largely on the presence of an intact 7-substituted imidazole ring and some cross-reaction occurred with 7-methylinosine. A weaker reaction occurred with ribothymidine and thymidine. Mouse antibodies induced by m7G-hemocyanin showed the highest specificity. They also recognized m7G in the isolated mRNA cap structure m7G(5')ppp(5')A.  相似文献   

9.
The m7(G(5')pppN-pyrophosphatase activity previously detected in HeLa cells has been further characterized. Results from DEAE-cellulose column chromatography and polyacrylamide gel electrophoresis under nondenaturing conditions revealed only one enzyme activity in HeLa cell extracts which was capable of selectively hydrolyzing m7G(5')pppN to yield m7pG + ppN (where N = 2'-O-methylated or unmethylated ribonucleosides or oligonucleotides of up to 8 to 10 nucleosides in length). The majority (approximately 95%) of this activity was found in the cytoplasmic extract but appeared not to be associated with the lysosomal fraction. m7G(5')pppG was hydrolyzed by the partially purified enzyme in the absence of divalent cations at a pH optimum of 7.5 and a temperature optimum of 45 degrees, with a Michaelis constant (Km) of 1.7 micronM. Sedimentation analysis and gel filtration showed the molecular weight of the enzyme as approximately 81,000. Inhibition studies testing the effect of a number of prospective substrates on the rate of m7G(5')pppG hydrolysis have confirmed the importance of the methyl moiety at the N7 position of guanosine for enzyme-substrate interaction. Furthermore, the trimethylated guanosine-containing 5'-terminal structure derived from U-2 RNA was found not to serve as substrate, and 7-methylinosine, unlike 7-methylguanosine, was not an effective inhibitor of m7G(5')pppG hydrolysis. Thus, the 2-amino group of the 7-methylguanosine portion of m7G(5')pppN is also important for substrate interaction with this specific pyrophosphatase.  相似文献   

10.
C Lee  R J Suhadolnik 《FEBS letters》1983,157(1):205-209
The introduction of the cordycepin analog of (2'-5')An, (2'-5')ppp(3'dAp)n3'dA [referred to as (2'-5')p33'dAn], into mouse L929 cells and cultured human fibroblasts resulted in a dose-dependent inhibition of protein synthesis which was comparable to the inhibition observed by (2'-5')ppp(Ap)nA [referred to as (2'-5')p3An]. The inhibition of protein synthesis by (2'-5')p33'dAn was much more persistent than that of the naturally occurring (2'-5')p3An following prolonged incubation of cells. Furthermore, the (2'-5')p3An was cytotoxic to mammalian cells in culture, whereas the (2'-5')p33'dAn was not.  相似文献   

11.
5'-Terminal and internal methylated nucleotide sequences in HeLa cell mRNA.   总被引:18,自引:0,他引:18  
C M Wei  A Gershowitz  B Moss 《Biochemistry》1976,15(2):397-401
The 5'-terminal oligonucleotides m7G(5')ppp(5')NmpNp and m7G(5')ppp(5')NmpNmpNp were isolated by DEAE-cellulose column chromatography after enzymatic digestion of 32P- or methyl-3H-labeled poly(A)" HeLa cell mRNA. The recovery of such oligonucleotides indicated that a high percentage of mRNA has blocked termini. The dimethylated nucleoside, N6, O2'-dimethyladenosine (m6Am), as well as the four common 2'-O-methylribonucleosides (Gm, Am, Um, Cm) were present in the second position linked through the triphosphate bridge to 7-methylguanosine (m7G) whereas little m6Am was in the third position. The only internal methylated nucleoside, N6-methyladenosine (m6A), was found exclusively as m6ApC and Apm6ApC after digestion with RNase A, T1, and alkaline phosphatase. Digestion with RNase A and alkaline phat pyrimidines are present in much smaller amounts or absent from this position. These results imply a considerable sequence specificity since there are thousands of different mRNA species in HeLa cells. Our studies are consistent with the following model of HeLa cell mRNA in which Nm may be m6Am, Gm, Cm, Um, or Am and one or more m6A residues are present at an unspecified internal location: m7G(5')ppp(5')Nm-(Nm)---(G or A)-m6A-C---(A)100-200A.  相似文献   

12.
The 5' terminal structure of the mRNA synthesized in vitro by the virion-associated RNA polymerase of vesicular stomatitis virus in the presence of S-adenosyl-L-methione consists of 7-methyl guanosine linked to 2'-O-methyl adenosine through a 5'-5' pyrophosphate bond as m7G(5')ppp(5')A-m-p ... The alpha and beta phosphated of GTP and alpha phosphate of ATP are incorporated into the blocked 5' terminal structure.  相似文献   

13.
14.
We have previously identified a HeLa cell 3' exonuclease specific for degrading poly(A) tails of mRNAs. Here we report on the purification and identification of a calf thymus 54-kDa polypeptide associated with a similar 3' exonuclease activity. The 54-kDa polypeptide was shown to be a fragment of the poly(A)-specific ribonuclease 74-kDa polypeptide. The native molecular mass of the nuclease activity was estimated to be 180-220 kDa. Protein/protein cross-linking revealed an oligomeric structure, most likely consisting of three subunits. The purified nuclease activity released 5'-AMP as the reaction product and degraded poly(A) in a highly processive fashion. The activity required monovalent cations and was dependent on divalent metal ions. The RNA substrate requirement was investigated, and it was found that the nuclease was highly poly(A)-specific and that only 3' end-located poly(A) was degraded by the activity. RNA substrates capped with m(7)G(5')ppp(5')G were more efficiently degraded than noncapped RNA substrates. Addition of free m(7)G(5')ppp(5')G cap analogue inhibited poly(A) degradation in vitro, suggesting a functional link between the RNA 5' end cap structure and poly(A) degradation at the 3' end of the RNA.  相似文献   

15.
16.
17.
All four components of brome mosaic virus RNA have m(7)G(5') ppp (5')Gp as their 5' terminus. The m(7)G can be removed by beta-elimination, resulting in the conversion to pppGp.  相似文献   

18.
The methylation pattern of virion-associated high-molecular-weight RNA synthesized in vitro by purified vaccinia virus has been determined. Analysis of purified high-molecular-weight RNA synthesized with S-[methyl-3H]-adenosylmethionine and alpha[32P]UTP as precursors gave the following results. (i) Eessentially all molecules contained blocked and methylated structures of the type m7G(5')ppp(5')Gm and m7G(5')ppp(5')Am. (ii) There was no detectable methylation at internal sites. (iii) Under several different conditions of synthesis, the ratio of molecules containing m7G(5')ppp(5')Gm to those containing m7G(5')ppp(5')Am was imilar for both the virion-associated high-molecular-weight RNA and the virion-released 8-12S mRNA.  相似文献   

19.
Characterization of the donor and acceptor specificities of mRNA guanylyltransferase and mRNA (guanine-7-)-methyltransferase isolated from vaccinia virus cores has enabled us to discriminate between alternative reaction sequences leading to the formation of the 5'-terminal m7G(5')pppN-structure. The mRNA guanylyltransferase catalyzes the transfer of a residue of GMP from GTP to acceptors which possess a 5'-terminal diphosphate. A diphosphate-terminated polyribonucleotide is preferred to a mononucleoside diphosphate as an acceptor suggesting that the guanylyltransferase reaction occurs after initiation of RNA synthesis. Although all of the homopolyribonucleotides tested (pp(A)n, pp(G)n, pp(I)n, pp(U)n, and pp(C)n) are acceptors for the mRNA guanylyltransferase indicating lack of strict sequence specificity, those containing purines are preferred. Only GTP and dGTP are donors in the reaction; 7-methylguanosine (m7G) triphosphate specifically is not a donor indicating that guanylylation must precede guanine-7-methylation. The preferred acceptor of the mRNA (guanine-7-)-methyltransferase is the product of the guanylyltransferase reaction, a polyribonucleotide with the 5'-terminal sequence G(5')pppN-. The enzyme can also catalyze, but less efficiently methylation of the following: dinucleoside triphosphates with the structure G(5')pppN, GTP, dGTP, ITP, GDP, GMP, and guanosine. The enzyme will not catalyze the transfer of methyl groups to ATP, XTP, CTP, UTP, or to guanosine-containing compounds with phosphate groups in either positions 2' or 3' or in 3'-5' phosphodiester linkages. The latter specificity provides an explanation for the absence of internal 7-methylguanosine in mRNA. In the presence of PPi, the mRNA guanylyltransferase catalyzes the pyrophosphorolysis of the dinucleoside triphosphate G(5')pppA, but not of m7G(5')pppA. Since PPi is generated in the process of RNA chain elongation, stabilization of the 5'-terminal sequences of mRNA is afforded by guanine-7-methylation.  相似文献   

20.
The capacity of Escherichia coli poly(A) polymerase to adenylylate the 3'-OH residue of a variety of nucleosides, nucleoside 5'-phosphates and dinucleotides of the type nucleoside(5')oligophospho(5')nucleoside is described here for the first time. Using micromolar concentrations of [alpha-32P]ATP, the following nucleosides/nucleotides were found to be substrates of the reaction: guanosine, AMP, CMP, GMP, IMP, GDP, CTP, dGTP, GTP, XTP, adenosine(5')diphospho(5')adenosine (Ap2A), adenosine (5')triphospho(5')adenosine (Ap3A), adenosine(5')tetraphospho(5')adenosine (Ap4A), adenosine(5')pentaphospho(5')adenosine (Ap5A), guanosine(5')diphospho(5') guanosine (Gp2G), guanosine(5')triphospho(5')guanosine (Gp3G), guanosine(5')tetraphospho(5')guanosine (Gp4G), and guanosine(5')pentaphospho(5')guanosine (Gp5G). The synthesized products were analysed by TLC or HPLC and characterized by their UV spectra, and by treatment with alkaline phosphatase and snake venom phosphodiesterase. The presence of 1 mM GMP inhibited competitively the polyadenylylation of tRNA. We hypothesize that the type of methods used to measure polyadenylation of RNA is the reason why this novel property of E. coli poly(A) polymerase has not been observed previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号