首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Properties of membrane-inserted protein kinase C   总被引:7,自引:0,他引:7  
M D Bazzi  G L Nelsestuen 《Biochemistry》1988,27(20):7589-7593
Protein kinase C (PKC) interacted with phospholipid vesicles in a calcium-dependent manner and produced two forms of membrane-associated PKC: a reversibly bound form and a membrane-inserted form. The two forms of PKC were isolated and compared with respect to enzyme stability, cofactor requirements, and phorbol ester binding ability. Membrane-inserted PKC was stable for several weeks in the presence of calcium chelators and could be rechromatographed on gel filtration columns in the presence of EGTA without dissociation of the enzyme from the membrane. The activity of membrane-inserted PKC was not significantly influenced by Ca2+, phospholipids, and/or PDBu. Partial dissociation of this PKC from phospholipid was achieved with Triton X-100, followed by dialysis to remove the detergent. The resulting free PKC appeared indistinguishable from original free PKC with respect to its cofactor requirements for activation (Ca2+, phospholipid, and phorbol esters), molecular weight, and phorbol 12,13-dibutyrate (PDBu) binding. The binding of PDBu to free and membrane-inserted PKC was measured under equilibrium conditions using gel filtration techniques. At 2.0 nM PDBu, free PKC bound PDBu with nearly 1:1 stoichiometry in the presence of Ca2+ and phospholipid. No PDBu binding to the free enzyme was observed in the absence of Ca2+. In contrast, membrane-inserted PKC bound PDBu in the presence or the absence of Ca2+; calcium did enhance the affinity of this interaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Physiological activation of protein kinase C requires the interaction of this enzyme with cellular membranes [Nishizuka (1986) Science 233, 305-312]. In the present work a reconstituted system of protein kinase C and human inside-out erythrocyte vesicles was utilized to study the effect in vitro of naturally occurring polyamines on the activation process of protein kinase C. The active membrane-associated complex was conveniently determined by its ability to bind radioactive phorbol ester with an exact 1:1 stoichiometry. The association reaction of the enzyme to membrane was rapid, being complete within 1 min at 25 degrees C. The addition of polyamines, particularly spermine, greatly decreased in a dose-dependent manner the amount of protein kinase C bound to membranes (i.e. in the activated form). The effect observed was quite specific, since it was dependent on the chemical structure of the polyamine and it was manifest at micromolar concentrations of the polycation; the order of potency was spermine greater than spermidine greater than putrescine. A characterization of this effect is presented and possible physiological implications are discussed.  相似文献   

3.
Properties of the protein kinase C-phorbol ester interaction   总被引:5,自引:0,他引:5  
The properties of the protein kinase C (PKC)-phorbol ester interaction were highly dependent on assay methods and conditions. Binding to cation-exchange materials or adsorption to gel matrices resulted in PKC that was capable of binding phorbol 12,13-dibutyrate (PDBu). The extraneous interactions were eliminated by measuring phorbol ester binding with a gel filtration chromatography assay in the presence of bovine serum albumin (BSA). In the absence of calcium, free PKC did not bind PDBu or phospholipids. Calcium caused structural changes in PKC which enhanced its interaction with surfaces such as the gel chromatography matrix. While BSA prevented this interaction, it did not interfere with PKC association with acidic phospholipids. Interaction of PKC with phospholipid resulted in two forms of membrane-associated PKC. The initial calcium-dependent and reversible form of membrane-associated PKC was capable of binding PDBu. Both PKC and PDBu were released from this complex by calcium chelation. Sustained interaction with phospholipid vesicles resulted in a PKC-membrane complex that could not be dissociated by calcium chelation and appeared to result from insertion of PKC into the hydrocarbon portion of the phospholipid bilayer. Membrane insertion was observed at calcium concentrations of 2-500 microM and with membrane compositions of 10-50% acidic phospholipid. However, the extent of insertion was dependent on the binding conditions and was promoted by high phospholipid to PKC ratios, high calcium, the presence of phorbol esters, high membrane charge, and long incubations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The tumor-promoting phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate, causes a rapid, partial redistribution of 1,2-sn-diacylglycerol kinase from the cytosol to the particulate fraction of quiescent, starved Swiss 3T3 fibroblasts. We utilized exogenous dioleoylglycerol as substrate for the kinase. The inactive alpha form of the phorbol ester does not cause any change in diacylglycerol kinase localization, and depletion of protein kinase C (Ca2+/phospholipid-dependent enzyme) by chronic administration of phorbol ester blocks the redistribution. Phorbol ester has no direct effect on Swiss 3T3 membrane-bound diacylglycerol kinase nor does it directly effect cytosolic diacylglycerol kinase. When phorbol ester is added to Swiss 3T3 membranes in the presence of ATP, magnesium, and calcium, there is no activation of membrane-bound kinase, indicating that phorbol ester does not activate membrane-bound kinase through phosphorylation by protein kinase C. Reconstitution studies show that the soluble rat brain diacylglycerol kinase binds to diacylglycerol-enriched membranes, produced by treatment of red cell ghosts with phospholipase C or calcium, suggesting that cytosolic diacylglycerol kinase may be capable of translocation to the membrane in response to elevated substrate concentration in the intact cell. Stimulation of the cells with phorbol ester increases the total mass of diacylglycerol. In protein kinase C-depleted cells, addition of a cell-permeable synthetic diacylglycerol, dioctanoylglycerol, results in a partial redistribution of cytosolic diacylglycerol kinase to the membrane, by 5 min, also suggesting that the translocation of diacylglycerol kinase activity is regulated primarily by substrate concentration.  相似文献   

5.
M D Bazzi  G L Nelsestuen 《Biochemistry》1989,28(24):9317-9323
The binding of protein kinase C (PKC) to membranes and appearance of kinase activity are separable events. Binding is a two-step process consisting of a reversible calcium-dependent interaction followed by an irreversible interaction that can only be dissociated by detergents. The irreversibly bound PKC is constitutively active, and the second step of binding may be a major mechanism of PKC activation [Bazzi & Nelsestuen (1988) Biochemistry 27, 7589]. This study examined the activity of other forms of membrane-bound PKC and compared the effects of phorbol esters and diacylglycerols. Like the membrane-binding event, activation of PKC was a two-stage process. Diacylglycerols (DAG) participated in forming an active PKC which was reversibly bound to the membrane. In this case, both activity and membrane binding were terminated by addition of calcium chelators. DAG functioned poorly in generating the constitutively active, irreversible PKC-membrane complex. These properties differed markedly from phorbol esters which activated PKC in a reversible complex but also promoted constitutive PKC activation by forming the irreversible PKC-membrane complex. The concentration of phorbol esters needed to generate the irreversible PKC-membrane complex was slightly higher than the concentration needed to activate PKC. In addition, high concentrations of phorbol esters (greater than or equal to 50 nM) activated PKC and induced irreversible PKC-membrane binding in the absence of calcium. Despite these striking differences, DAG prevented binding of phorbol esters to high-affinity sites on the PKC-membrane complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Zinc increases the affinity of phorbol ester receptor in T lymphocytes   总被引:1,自引:0,他引:1  
In the primary structure of the major phorbol ester receptor, protein kinase C the presence of putative metal (zinc) binding sites has been suggested. We have demonstrated earlier that zinc activates protein kinase C and contributes to its binding to plasma membranes in T lymphocytes. Here we report that zinc increases the phorbol ester binding affinity of cytosolic protein kinase C. The effect of zinc on the membrane-bound enzyme is much less pronounced. Our results raise the possibility that cytosolic protein kinase C is a mixture of isoenzymes with different sensitivity towards zinc ions.  相似文献   

7.
Protein Kinase C (PKC) has been a principal regulatory enzyme whose function has been intensely investigated in the past decade. The primary features of this family of enzymes includes phosphorylation of serine and threonine residues located on basic proteins and peptides in a manner that is stimulated by calcium, phospholipid, and either diacylglycerol or phorbol esters. An additional intriguing feature of the enzyme is its ability to form two membrane-associated states, one of which is calcium dependent and reversible and the second is an irreversible complex which has the characteristics of an intrinsic membrane protein. Formation of the irreversible membrane-bound form is greatly facilitated by calcium and the tumor-promoting phorbol esters but does not appear to include covalent changes in the PKC structure. The intrinsic membrane-bound form is a very different enzyme in that its activity is no longer dependent on the other cofactors. It is proposed that formation of the irreversible membrane-bound form may be a mechanism for generating long-term cell regulation events where transient cell signals and second messengers induce long-term changes in the distribution of an enzyme in the cell. This property may be common to a number of regulatory proteins that are known to be distributed between the cytosol and membrane-fractions in the cell. Unfortunately, many problems have confronted study of PKC mechanism using thein vitro assay. This assay involves aggregation of the substrate, phospholipid, and enzyme to form a discontinuous mixture. Such as complex system prevents straightforward interpretation of enzyme kinetic data. Although many compounds affect thein vitro activity of PKC, most appear to accomplish this by relatively uninteresting mechanisms such as interference with the aggregation process. While some highly potent inhibitors undoubtedly interact directly with PKC, they also inhibit other enzymes and there are no entirely specific inhibitors of PKC known. Speculation on the possible roles of PKC in cell regulation are abundant and exciting. However, delineation of the regulatory roles of PKC may require another decade of intense effort.  相似文献   

8.
Constitutive activity of membrane-inserted protein kinase C   总被引:6,自引:0,他引:6  
Incubation of purified protein kinase C (PKC) with phospholipid vesicles produced two populations of membrane-bound PKC: one population was dissociated by calcium chelation and the other was not. The second population appeared to be inserted into the membrane. The activity of membrane-inserted PKC was Ca2+-independent and was only modestly sensitive to phorbol esters. Insertion was caused by high calcium concentrations or by phorbol esters plus low calcium. These conditions correlated with those needed to activate PKC; insertion into the membrane may be a primary mechanism of PKC activation. PKC may be a long-term cell regulator which becomes inserted into the membrane upon appearance of the second messengers, calcium and diacylglycerol, and remains in an active membrane-bound state when the second messengers have been removed.  相似文献   

9.
The role of lipid composition in the interaction of purified protein kinase C with large unilamellar vesicles was determined by the extent of photolabelling of the enzyme with 5-[125I]iodonaphthalene-I-azide. The protein kinase C was only slightly labelled when exposed to phosphatidylcholine (PC) liposomes. The addition of phorbol 12-myristate 13-acetate (PMA) or of diacylglycerol to the PC liposomes enhanced significantly the labelling of the protein kinase C at low calcium concentrations. A further enhancement in the photolabelling of the protein kinase C was observed in liposomes containing 2% phosphatidylserine (PS). At low calcium concentrations, the binding of the enzyme to these liposomes increased in the presence of added PMA or diacylglycerol. Raising the levels of PS beyond 2% in the liposomes did not enhance the binding of the protein kinase C. However, when the enzymatic activity of the protein kinase C was measured using basic histones as substrates, maximum phosphorylation was obtained in liposomes with a PC to PS ratio of 1. The fact that the translocation of the protein kinase C from solution to the surface of the liposomes could be monitored by its labelling with 5-iodonaphthalene 1-azide prompted us to determine whether other cytoplasmic proteins might share this property. The interaction of cytoplasmic proteins from HeLa cells with PC liposomes gave trace labelling irrespective of whether calcium was added. When the HeLa cell cytoplasmic proteins were allowed to interact with liposomes containing PS, selective 5-iodonaphthalene-1-azide photolabelling was observed in distinct proteins. Addition of calcium and of PMA or diacylglycerol modified the labelling of some but not all of these proteins. These results suggest that the methodology developed might serve to identify proteins that move to the membrane during stimulation of cells by phorbol esters or by growth factors which induce the generation of diacylglycerol. These results also suggest a role for the phospholipid composition of the plasma membrane (or any intracellular membrane) in the modulation of the activation processes of specific phospholipid-dependent proteins, in particular protein kinase C.  相似文献   

10.
The in vitro mechanism by which polyamines affect protein kinase C (PK C) activation process was investigated in a reconstituted system consisting of purified enzyme and phospholipid vesicles of various phosphatidylserine content. It was found that the addition of spermine greatly interferes with the association of PK C to liposomes. This tetramine, at micromolar concentrations, was most potently effective while other polyamines such as spermidine and putrescine were almost ineffective; therefore the modulatory action appeared to be structure specific. The spermine effect is dramatically influenced by the density of the phosphatidylserine present on the liposome, suggesting the complex formation with the acidic component on phospholipid vesicles to be the mechanism by which this polyamine exerts its modulatory action.  相似文献   

11.
One of the early events associated with the treatment of cells by tumor promotor phorbol esters is the tight association of protein kinase C to the plasma membrane. To better understand the factors that regulate this process, phorbol ester-induced membrane binding of protein kinase C was studied using homogenates, as well as isolated membranes and purified enzyme. Addition of 12-O-tetradecanoylphorbol 13-acetate (TPA) to the homogenates of parietal yolk sac cells and NIH 3T3 cells in the presence of Ca2+ resulted in plasma membrane binding of protein kinase C which subsequently remained bound to the membrane independent of Ca2+. Although protein kinase C was activated by TPA in the absence of Ca2+ and by diolein in the presence of Ca2+, both these agents when added to homogenates under these respective conditions had no effect on membrane association of protein kinase C. However, under these conditions relatively weak binding of protein kinase C was found if purified protein kinase C was used with isolated membranes. Binding studies using purified protein kinase C and washed membranes showed that the binding of the TPA-kinase complex to membranes required phospholipids and reached saturation at 0.1 unit (24 ng of protein kinase C)/mg of parietal yolk sac cell membrane protein. Phorbol ester treatment of cells in media with and without Ca2+ showed that the TPA-induced increase in membrane-associated protein kinase C was regulated by Ca2+ levels even in intact cells. TPA-stabilized membrane binding of protein kinase C differs in several aspects from the previously reported Ca2+-induced reversible binding. TPA-stabilized binding of protein kinase C to isolated membranes is temperature dependent, relatively high in the plasma membrane-enriched fraction, saturable at physiological levels of protein kinase C, requires the presence of both membrane protein(s) and phospholipids, and further requires the addition of phospholipid micelles. In contrast, Ca2+-induced reversible binding is more rapid, not appreciably influenced by temperature, not selective for a particular subcellular fraction, not saturable with physiological amounts of protein kinase C, exhibits trypsin-insensitive membrane binding sites, and requires membrane phospholipids but not added phospholipid micelles.  相似文献   

12.
The tumor-promoting phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate, causes a rapid, partial redistribution of 1,2-diacylglycerol kinase from the cytosol to the particulate fraction of quiescent Swiss 3T3 fibroblasts. The inactive alpha form of the phorbol ester does not cause any change in diacylglycerol kinase localization, and depletion of protein kinase C by chronic administration of phorbol ester blocks the redistribution. Phorbol ester has no direct effect on membrane-bound diacylglycerol kinase in 3T3 cells. When phorbol ester is added to 3T3 membranes in the presence of ATP, Mg2+, and Ca2+, there is no activation of membrane-bound kinase, indicating that phorbol ester does not activate membrane-bound kinase through phosphorylation by protein kinase C. Stimulation of the cells with phorbol ester increases the total mass of diacylglycerol. In protein kinase C-depleted cells, addition of a cell-permeable synthetic diacylglycerol, dioctanoylglycerol, results in a partial redistribution of cytosolic diacylglycerol kinase to the membrane, also suggesting that the translocation of DAG kinase is regulated primarily by substrate concentration.  相似文献   

13.
A mixed micellar assay for the binding of phorbol-esters to protein kinase C was developed to investigate the specificity and stoichiometry of phospholipid cofactor dependence and oligomeric state of protein kinase C (Ca2+/phospholipid-dependent enzyme) required for phorbol ester binding. [3H]Phorbol dibutyrate was bound to protein kinase C in the presence of Triton X-100 mixed micelles containing 20 mol % phosphatidylserine (PS) in a calcium-dependent manner with a Kd of 5 X 10(-9) M. The [3H]phorbol dibutyrate X protein kinase C . Triton X-100 . PS mixed micellar complex eluted on a Sephacryl S-200 molecular sieve at an Mr of approximately 200,000; this demonstrates that monomeric protein kinase C binds phorbol dibutyrate. This conclusion was supported by molecular sieve chromatography of a similar complex where Triton X-100 was replaced with beta-octylglucoside. Phorbol dibutyrate activation of protein kinase C in Triton X-100/PS mixed micelles occurred and was dependent on calcium. The PS dependence of both phorbol ester activation and binding to protein kinase C lagged initially and then was highly cooperative. The minimal mole per cent PS required was strongly dependent on the concentration of phorbol dibutyrate or phorbol myristic acetate employed. Even at the highest concentration of phorbol ester tested, a minimum of 3 mol % PS was required; this indicates that approximately four molecules of PS are required. [3H]Phorbol dibutyrate binding was independent of micelle number at 20 mol % PS. The phospholipid dependencies of phorbol ester binding and activation were similar, with PS being the most effective; anionic phospholipids (cardiolipin, phosphatidic acid, and phosphatidylglycerol were less effective, whereas phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin did not support binding or activation. sn-1,2-Dioleoylglycerol displaced [3H]phorbol dibutyrate quantitatively and competitively. The data are discussed in relation to a molecular model of protein kinase C activation.  相似文献   

14.
Exposure of protein kinase C to low concentrations of either N-chlorosuccinimide or H2O2 resulted in rapid and parallel loss of phosphotransferase activity and phorbol ester binding. This oxidative inactivation of protein kinase C also occurred in intact cells exposed to a low concentration of H2O2. With H2O2 treatment the rate of inactivation of protein kinase C in the cytosol of MCF-7 cells was rather slower than that which occurred in the cytosol of PYS cells. However, in both cell types, the oxidative inactivation of membrane-associated protein kinase C occurred rapidly in comparison to the enzyme in the cytosol. Prior treatment of cells with phorbol ester to induce membrane association (stabilization) of protein kinase C, followed by exposure to H2O2, resulted in increased inactivation of protein kinase C, suggesting that membrane association of protein kinase C increases its susceptibility to oxidative inactivation.  相似文献   

15.
Protein kinase C is generally accepted to be a receptor protein of tumor-promoting phorbol esters. The binding of [3H]phorbol-12,13-dibutyrate to protein kinase C can be assayed by a rapid filtration procedure using a glass-fiber filter that has been treated with a cationic polymer, polyethylenimine. The phorbol ester specifically binds to the protein kinase only in the presence of phosphatidylserine and calcium. Non-specific binding is less than 10%, at most, of the total binding. The binding is linear with respect to the concentration of protein kinase C, is dependent on the concentrations of phorbol ester and phosphatidylserine in a saturative manner, and is inhibited by diacylglycerol (an endogenous activator of the protein kinase).  相似文献   

16.
A tumor-promoting phorbol ester, [3H]phorbol-12,13-dibutyrate, may bind to a homogeneous preparation of Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) in the simultaneous presence of Ca2+ and phospholipid. This tumor promoter does not bind simply to phospholipid nor to the enzyme per se irrespective of the presence and absence of Ca2+. All four components mentioned above appear to be bound together, and the quaternary complex thus produced is enzymatically fully active for protein phosphorylation. Phosphatidylserine is most effective. Various other phorbol derivatives which are active in tumor promotion compete with [3H]phorbol-12,13-dibutyrate for the binding, and an apparent dissociation binding constant of the tumor promoter is 8 nM. This value is identical with the activation constant for protein kinase C and remarkably similar to the dissociation binding constant that is described for intact cell surface receptors. The binding of the phorbol ester is prevented specifically by the addition of diacylglycerol, which serves as activator of protein kinase C under physiological conditions. Scatchard analysis suggests that one molecule of the tumor promoter may bind to every molecule of protein kinase C in the presence of Ca2+ and excess phospholipid. It is suggestive that protein kinase C is a phorbol ester-receptive protein, and the results presented seem to provide clues for clarifying the mechanism of tumor promotion.  相似文献   

17.
Physiologic regulation of protein kinase C activity requires its interaction with cellular membranes. We have recently shown that binding of the enzyme to plasma membranes is controlled by Ca2+, whereas enzyme activators, like phorbol esters, regulate both membrane binding and enzyme activity. Here we describe the factors which control the dissociation of protein kinase C from the plasma membrane. In the absence of phorbol esters, the dissociation reaction is rapid and is determined by varying the Ca2+ concentration between 0.1 and 1 microM. However, the presence of 4-beta-phorbol 12,13-dibutyrate greatly reduces enzyme release in response to Ca2+ depletion; removal of the phorbol ester itself permits efficient membrane-enzyme dissociation. The stabilization of the membrane-protein kinase C complex by phorbol esters can be reversed by ATP with an apparent Km for the nucleotide of 6.5 microM. The ATP effect requires MgCl2 and cannot be reproduced by other nucleotides or by a nonhydrolyzable analogue, suggesting that an ATP-dependent phosphorylation reaction may be involved. 4-beta-Phorbol 12,13-dibutyrate appears to stabilize membrane-enzyme association by reducing the apparent Km for Ca2+ to about 15 nM, whereas ATP reverses the phorbol ester effect by increasing the Km for Ca2+ to about 760 nM. Furthermore, the strong degree of negative cooperativity displayed by the Ca2+-dependent enzyme-membrane dissociation is consistent with the presence of multiple interacting Ca2+-binding sites on protein kinase C.  相似文献   

18.
Incubation of protein kinase C (PKC) alpha with phorbol 12,13-dibutyrate and phospholipid vesicles promoted a time-dependent irreversible insertion of the enzyme into the vesicles and the generation of a calcium-independent kinase activity. Calcium neither caused insertion nor influenced the insertion induced by the phorbol ester. The effect was strongly dependent on the phosphatidylserine concentration in the vesicle and could also be supported by other anionic phospholipids. An analysis of the structure-activity relations of PKC activators for the calcium-independent kinase activity revealed marked relative differences in potencies for binding and for insertion. Compounds such as phorbol 13-myristate 12-acetate and mezerein were very efficient at inducing insertion. In contrast, 12-deoxyphorbol esters and diacylglycerol were relatively inefficient at inducing insertion, requiring higher concentrations than expected from their binding affinities. The insertion of PKC alpha depended substantially on the length of the aliphatic esters in the 12- and 13-positions of the phorbol derivatives, and once again, potencies for insertion and binding were not directly proportional. Our findings suggest two different sites for ligand interaction on the molecule of PKC alpha with different structure-activity requirements. We speculate that the differential ability of compounds to promote insertion could contribute to the documented marked differences in the biological behavior of PKC activators.  相似文献   

19.
In this report, we demonstrate that HL-60 nuclei isolated in calcium but not EGTA containing buffers specifically bind PE and express approximately 37,000 receptor sites/nucleus. Nuclear phorbol ester binding is lost by isolation in the absence of calcium, but can be repleted by the addition of partially purified protein kinase C and calcium. When HL-60 cells are treated with bryostatin 1, a compound which activates protein kinase C in a similar fashion to phorbol esters but does not induce differentiation of HL-60 cells, and nuclei are isolated in the presence of EGTA, these nuclei continue to bind phorbol esters. These experiments suggest that HL-60 nuclei bind PE in vitro, and that compounds that activate protein kinase C may increase nuclear binding of PE in situ.  相似文献   

20.
Calcium/phosphatidylserine-dependent protein kinase C (PKC) is activated by phosphatidylinositol 4,5-bisphosphate (PIP2), as well as by diacylglycerol (DG) and phorbol esters. Here we report that PIP2, like DG, increases the affinity of PKC for Ca2+, and causes Ca(2+)-dependent translocation of the enzyme from the soluble to a particulate fraction (liposomes). Phosphatidylinositol 4-phosphate (PIP) also displaces phorbol ester from PKC and causes Ca(2+)-dependent translocation of the enzyme to liposomes, but is much less efficient than PIP2, and a much weaker activator, with a histone phosphorylation v(PIP)/v(PIP2) of approximately 0.15. Scatchard analysis indicates competitive inhibition between PIP and phorbol ester with Ki(PIP) = 0.26 mol% as compared with Ki(PIP2) = 0.043 mol%. No effect of phosphatidylinositol (PI) on phorbol ester binding to PKC, translocation of PKC, or activation of PKC was observed. These results suggest that both PIP and PIP2 can complex with PKC, but full activation of the enzyme takes place only when PIP is converted to PIP2. We suggest that an inositide interconversion shuttle has a role in the regulation of protein phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号