首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Summary Mutations of the homeotic gene fork head (fkh) of Drosophila transform the non-segmented terminal regions of the embryonic ectoderm into segmental derivatives: Pre-oral head structures and the foregut are replaced by post-oral head structures which are occasionally associated with thoracic structures. Posterior tail structures including the hindgut and the Malpighian tubules are replaced by post-oral head structures associated with anterior tail structures. The fkh gene shows no maternal effect and is required only during embryogenesis. The phenotypes of double mutants indicate that fkh acts independently of other homeotic genes (ANT-C, BX-C, spalt) and caudal. In addition, the fkh domains are not expanded in Polycomb (Pc) group mutant embryos. Ectopic expression of the homeotic selector genes of the ANT-C and BX-C in Pc group mutant embryos causes segmental transformations in terminal regions of the embryo only in the absence of fkh gene activity. Thus, fkh is a region-specific homeotic rather than a selector gene, which promotes terminal as opposed to segmental development. Offprint requests to: Institut für Biologie II (Genetik), Universität Tübingen, Auf der Morgenstelle 28, D-7400 Tübingen, Federal Republic of Germany  相似文献   

4.
5.
Mutations in spalt (sal), a novel homeotic gene on the second chromosome of Drosophila, cause opposite transformations in two subterminal regions of the embryo: posterior head segments are transformed into anterior thoracic structures and anterior tail segments are transformed into posterior abdominal structures. The embryonic phenotypes of double mutants for sal and various Antennapedia (ANT-C) or bithorax (BX-C) genes indicate that sal acts independently of the hierarchical order of the latter gene complexes. Trans-regulatory gene mutations causing ectopic expression of ANT-C and BX-C genes do not change the realms of sal action. It is proposed that the region-specific action of the sal gene primarily promotes head as opposed to trunk development, while the BX-C gene AbdB distinguishes tail from head.  相似文献   

6.
7.
8.
9.
The Drosophila tolloid (tld) and tolloid related (tlr) gene products belong to a family of developmentally important proteases that includes Bone Morphogenetic Protein 1 (Bmp1). Tld is required early in Drosophila development for proper patterning of dorsal embryonic structures, whereas Tlr is required later during larval and pupal stages of development. The major function of Tld is to augment the activity of Decapentaplegic (Dpp) and Screw (Scw), two members of the Bmp subgroup of the Tgf beta superfamily, by cleaving the Bmp inhibitor Short gastrulation (Sog). In this study, we provide evidence that Tlr also contributes to Sog processing. Tlr cleaves Sog in vitro in a Bmp-dependent manner at the same three major sites as does Tld. However, Tlr shows different site selection preferences and cleaves Sog with slower kinetics. To test whether these differences are important in vivo, we investigated the role of Tlr and Tld during development of the posterior crossvein (PCV) in the pupal wing. We show that tlr mutants lack the PCV as a result of too little Bmp signaling. This is probably caused by excess Sog activity, as the phenotype can be suppressed by lowering Sog levels. However, Tld cannot substitute for Tlr in the PCV; in fact, misexpressed Tld can cause loss of the PCV. Reducing levels of Sog can also cause loss of the PCV, indicating that Sog has not only an inhibitory but also a positive effect on signaling in the PCV. We propose that the specific catalytic properties of Tlr and Tld have evolved to achieve the proper balance between the inhibitory and positive activities of Sog in the PCV and early embryo, respectively. We further suggest that, as in the embryo, the positive effect of Sog upon Bmp signaling probably stems from its role in a ligand transport process.  相似文献   

10.
Suppression of wing fate and specification of haltere fate in Drosophila by the homeotic gene Ultrabithorax is a classical example of Hox regulation of serial homology (Lewis, E.B. 1978. Nature 276, 565-570) and has served as a paradigm for understanding homeotic gene function. We have used DNA microarray analyses to identify potential targets of Ultrabithorax function during haltere specification. Expression patterns of 18 validated target genes and functional analyses of a subset of these genes suggest that down-regulation of both anterior-posterior and dorso-ventral signaling is critical for haltere fate specification. This is further confirmed by the observation that combined over-expression of Decapentaplegic and Vestigial is sufficient to override the effect of Ubx and cause dramatic haltere-to-wing transformations. Our results also demonstrate that analysis of the differential development of wing and haltere is a good assay system to identify novel regulators of key signaling pathways.  相似文献   

11.
Six3 exerts multiple functions in the development of anterior neural tissue of vertebrate embryos. Whereas complete loss of Six3 function in the mouse results in failure of forebrain formation, its hypomorphic mutations in human and mouse can promote holoprosencephaly (HPE), a forebrain malformation that results, at least in part, from abnormal telencephalon development. However, the roles of Six3 in telencephalon patterning and differentiation are not well understood. To address the role of Six3 in telencephalon development, we analyzed zebrafish embryos deficient in two out of three Six3-related genes, six3b and six7, representing a partial loss of Six3 function. We found that telencephalon forms in six3b;six7-deficient embryos; however, ventral telencephalic domains are smaller and dorsal domains are larger. Decreased cell proliferation or excess apoptosis cannot account for the ventral deficiency. Instead, six3b and six7 are required during early segmentation for specification of ventral progenitors, similar to the role of Hedgehog (Hh) signaling in telencephalon development. Unlike in mice, we observe that Hh signaling is not disrupted in embryos with reduced Six3 function. Furthermore, six3b overexpression is sufficient to compensate for loss of Hh signaling in isl1- but not nkx2.1b-positive cells, suggesting a novel Hh-independent role for Six3 in telencephalon patterning. We further find that Six3 promotes ventral telencephalic fates through transient regulation of foxg1a expression and repression of the Wnt/β-catenin pathway.  相似文献   

12.
13.
14.
15.
A critical step in animal development is the specification of primordial germ cells (PGCs), the precursors of the germline. Two seemingly mutually exclusive mechanisms are implemented across the animal kingdom: epigenesis and preformation. In epigenesis, PGC specification is non-autonomous and depends on extrinsic signaling pathways. The BMP pathway provides the key PGC specification signals in mammals. Preformation is autonomous and mediated by determinants localized within PGCs. In Drosophila, a classic example of preformation, constituents of the germ plasm localized at the embryonic posterior are thought to be both necessary and sufficient for proper determination of PGCs. Contrary to this longstanding model, here we show that these localized determinants are insufficient by themselves to direct PGC specification in blastoderm stage embryos. Instead, we find that the BMP signaling pathway is required at multiple steps during the specification process and functions in conjunction with components of the germ plasm to orchestrate PGC fate.  相似文献   

16.
17.
In the developing nervous system, building a functional neuronal network relies on coordinating the formation, specification and survival to diverse neuronal and glial cell subtypes. The establishment of neuronal connections further depends on sequential neuron-neuron and neuron-glia interactions that regulate cell-migration patterns and axon guidance. The visual system of Drosophila has a highly regular, retinotopic organization into reiterated interconnected synaptic circuits. It is therefore an excellent invertebrate model to investigate basic cellular strategies and molecular determinants regulating the different developmental processes that lead to network formation. Studies in the visual system have provided important insights into the mechanisms by which photoreceptor axons connect with their synaptic partners within the optic lobe. In this review, we highlight that this system is also well suited for uncovering general principles that underlie glial cell biology. We describe the glial cell subtypes in the visual system and discuss recent findings about their development and migration. Finally, we outline the pivotal roles of glial cells in mediating neural circuit assembly, boundary formation, neural proliferation and survival, as well as synaptic function.  相似文献   

18.
The PALB2 tumor suppressor plays key roles in DNA repair and has been implicated in redox homeostasis. Autophagy maintains mitochondrial quality, mitigates oxidative stress and suppresses neurodegeneration. Here we show that Palb2 deletion in the mouse brain leads to mild motor deficits and that co-deletion of Palb2 with the essential autophagy gene Atg7 accelerates and exacerbates neurodegeneration induced by ATG7 loss. Palb2 deletion leads to elevated DNA damage, oxidative stress and mitochondrial markers, especially in Purkinje cells, and co-deletion of Palb2 and Atg7 results in accelerated Purkinje cell loss. Further analyses suggest that the accelerated Purkinje cell loss and severe neurodegeneration in the double deletion mice are due to excessive oxidative stress and mitochondrial dysfunction, rather than DNA damage, and partially dependent on p53 activity. Our studies uncover a role of PALB2 in mitochondrial homeostasis and a cooperation between PALB2 and ATG7/autophagy in maintaining redox and mitochondrial homeostasis essential for neuronal survival.  相似文献   

19.
20.
JNK signaling is a highly conserved signaling pathway that regulates a broad spectrum of cellular processes including cell proliferation, migration, and apoptosis. In Drosophila, JNK signaling is activated by binding of the tumor necrosis factor (TNF) Eiger to its receptor Wengen, and a conserved signaling cascade operates that culminates into activation of dual phosphatase Puckered thereby triggering apoptosis. The tumor necrosis factor receptor (TNFR) associated factor 6 (TRAF6) is an adaptor protein, which transduces the signal from TNFRs and Toll-like receptor/interleukin-1 receptor superfamily to induce a wide spectrum of cellular responses. TRAF6 also acts as the adaptor protein that mediates Eiger/JNK signaling in Drosophila. In a genetic interaction study, deltex (Dx) was identified as a novel interactor of TRAF6. Dx is well known to regulate Notch signaling in a context-dependent manner. Our data suggest that combinatorial action of Dx and TRAF6 enhances the Dx-induced wing nicking phenotype by inducing caspase-mediated cell death. Co-expression of Dx and TRAF6 also results in enhanced invasive behavior and perturbs the normal morphology of cells. The cooperative action of Dx and TRAF6 is attributed to JNK activation, which also leads to ectopic wingless (Wg) and decapentaplegic (Dpp) expression. Our results also reveal that the endocytic pathway component Rab7 may play a pivotal role in the regulation of Dx–TRAF6-mediated activation of JNK signaling. Here, we present the fact that Dx and TRAF6 together activate JNK signaling in an Eiger-independent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号