首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chow CY  Wu MC  Fang HJ  Hu CK  Chen HM  Tsong TY 《Proteins》2008,72(3):901-909
Fluorescence and circular dichroism stopped-flow have been widely used to determine the kinetics of protein folding including folding rates and possible folding pathways. Yet, these measurements are not able to provide spatial information of protein folding/unfolding. Especially, conformations of denatured states cannot be elaborated in detail. In this study, we apply the method of fluorescence energy transfer with a stopped-flow technique to study global structural changes of the staphylococcal nuclease (SNase) mutant K45C, where lysine 45 is replaced by cysteine, during folding and unfolding. By labeling the thiol group of cysteine with TNB (5,5'-dithiobis-2-nitrobenzoic acid) as an energy acceptor and the tryptophan at position 140 as a donor, distance changes between the acceptor and the donor during folding and unfolding are measured from the efficiency of energy transfer. Results indicate that the denatured states of SNase are highly compact regardless of how the denatured states (pH-induced or GdmCl-induced) are induced. The range of distance changes between two probes is between 25.6 and 25.4 A while it is 20.4 A for the native state. Furthermore, the folding process consists of three kinetic phases while the unfolding process is a single phase. These observations agree with our previous sequential model: N(0) left arrow over right arrow D(1) left arrow over right arrow D(2) left arrow over right arrow D(3) (Chen et al., J Mol Biol 1991;220:771-778). The efficiency of protein folding may be attributed to initiating the folding process from these compact denatured structures.  相似文献   

2.
3.
D J Weber  G P Mullen  A S Mildvan 《Biochemistry》1991,30(30):7425-7437
The dinucleoside phosphodiester dTdA is a slow substrate of staphylococcal nuclease (kcat = 3.8 X 10(-3) s-1) that forms binary E-S and ternary E-M-S complexes with Ca2+, Mn2+, Co2+, and La3+. The enzyme enhances the paramagnetic effects of Co2+ on 1/T1 and 1/T2 of the phosphorus and on 1/T1 of six proton resonances of dTdA, and these effects are abolished by binding of the competitive inhibitor 3',5'-pdTp. From paramagnetic effects of Co2+ on 1/T2 of phosphorus, koff of dTdA from the ternary E-Co(2+)-dTdA complex is greater than or equal to 4.8 X 10(4) s-1 and kon greater than or equal to 1.4 X 10(6) M-1 s-1, indicating the 1/T1 values to be in fast exchange. From paramagnetic effects of enzyme-bound Co2+ on 1/T1 of phosphorus and protons, with use of a correlation time of 1.6 ps on the basis of 1/T1 values at 250 and 600 MHz, 7 metal-nucleus distances and 9 lower-limit metal-nucleus distances are calculated. The long Co2+ to 31P distance of 4.1 +/- 0.9 A, which is intermediate between that expected for direct phosphoryl coordination (3.31 +/- 0.02 A) and a second sphere complex with an intervening water ligand (4.75 +/- 0.02 A), suggests either a distorted inner sphere complex or the rapid averaging of 18% inner sphere and 82% second sphere complexes and may explain the reduced catalytic activity with small dinucleotide substrates. Seventeen interproton distances and 108 lower limit interproton distances in dTdA in the ternary E-La(3+)-dTdA complex were determined by NOESY spectra at 50-, 100-, and 200-ms mixing times. While metal-substrate and interproton distances alone did not yield a unique structure, the combination of both sets of distances yielded a very narrow range of conformations for enzyme-bound dTdA, which was highly extended, with no base stacking, with high-anti glycosidic torsional angles for dT (64 degrees less than or equal to chi less than or equal to 73 degrees) and dA (66 degrees less than or equal to chi less than or equal to 68 degrees) and predominantly C-2'-endo sugar puckers for both nucleosides. Although the individual nucleosides are like those of B-DNA, their unstacked conformation, which is inappropriate for base pairing, as well as the conformational angles alpha and gamma of dA and zeta of dT, rule out B-DNA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
In an earlier study of the denatured state of staphylococcal nuclease (Wang Y, Shortle D, 1995, Biochemistry 34:15895-15905), we reported evidence of a three-strand antiparallel beta sheet that persists at high urea concentrations and is stabilized by a local "non-native" interaction with four large hydrophobic residues. Because the amide proton resonances for all of the involved residues are severely broadened, this unusual structure is not amenable to conventional NMR analysis and must be studied by indirect methods. In this report, we present data that confirm the important role of interactions involving four hydrophobic residues (Leu 36, Leu 37, Leu 38, and Val 39) in stabilizing the structure formed by the chain segments corresponding to beta 1-beta 2-beta 3-h, interactions that are not present in the native state. Glycine substitutions for each of these large hydrophobic residues destabilizes or disrupts this beta structure, as assessed by HN line sharpening and changes in the CD spectrum. The 13C resonances of the carbonyl carbon for several of the residues in this structure indicate conformational dynamics that respond in a complex way to addition of urea or changes in sequence. Studies of hydrogen exchange kinetics in a closely related variant of staphylococcal nuclease demonstrate the absence of the stable hydrogen bonding between the strands expected for a native-like three-strand beta sheet. Instead, the data are more consistent with the three beta strand segments plus the four adjacent hydrophobic residues forming a dynamic, aligned array or bundle held together by hydrophobic interactions.  相似文献   

5.
The self-association reaction of denatured staphylococcal nuclease fragments, urea-denatured G88W110, containing residues 1-110 and mutation G88W, and physiologically denatured 131-residue Delta 131 Delta, have been characterized by NMR at close to neutral pH. The two fragments differ in the extent and degree of association due to the different sequence and experimental conditions. Residues 13-39, which show significant exchange line broadening, constitute the main association interface in both fragments. A second weak association region was identified involving residues 79-105 only in the case of urea-denatured G88W110. For residues involved in the association reaction, significant suppression of the line broadening and small but systematic chemical shift variation of the amide protons were observed as the protein concentration decreased. The direction of chemical shift change suggests that the associated state adopts mainly beta-sheet-like conformation, and the beta-hairpin formed by strands beta 2 and beta 3 is native-like. The apparent molecular size obtained by diffusion coefficient measurements shows a weak degree of association for Delta 131 Delta below 0.4 mM protein concentration and for G88W110 in 4 M urea. In both cases the fragments are predominantly in the monomeric state. However, the weak association reaction can significantly influence the transverse relaxation of residues involved in the association reaction. The degree of association abruptly increases for Delta 131 Delta above 0.4 mM concentration, and it is estimated to form a 4 to 8 mer at 2 mM. It is proposed that the main region involved in association forms the core structure, with the remainder of residues largely disordered in the associated state. Despite the obvious influence of the association reaction on the slow motion of the backbone, the restricted mobility on the nanosecond timescale around the region of strand beta 5 is essentially unaffected by the association reaction and degree of denaturation.  相似文献   

6.
Hydrogen exchange kinetics were measured on the native states of wild type staphylococcal nuclease and four mutants with values of mGuHCl (defined as dDeltaG/d[guanidine hydrochloride]) ranging from 0.8 to 1.4 of the wild type value. Residues within the five-strand beta-barrel of wild type and E75A and D77A, two mutants with reduced values of m GuHCl, were significantly more protected from exchange than expected on the basis of global stability as measured by fluorescence. In contrast, mutants V23A and M26G with elevated values of mGuHCl approach a flat profile of more or less constant protection independent of position in the structure. Differences in exchange protection between the C-terminus and the beta-barrel region correlate with mGuHCl, suggesting that a residual barrel-like structure becomes more highly populated in the denatured states of m- mutants and less populated in m+ mutants. Variations in the population of such a molten globule-like structure would account for the large changes in solvent accessible surface area of the denatured state thought to underlie m value effects.  相似文献   

7.
An expanded, highly dynamic denatured state of staphylococcal nuclease exhibits a native-like topology in the apparent absence of tight packing and fixed hydrogen bonds (Gillespie JR, Shortle D, 1997, J Mol Biol 268:158-169, 170-184). To address the physical basis of the long-range spatial ordering of this molecule, we probe the effects of perturbations of the sequence and solution conditions on the local chain dynamics of a denatured 101-residue fragment that is missing the first three beta strands. Structural interactions between chain segments are inferred from correlated changes in the motional behavior of residues monitored by 15N NMR relaxation measurements. Restoration of the sequence corresponding to the first three beta strands significantly increases the average order of all chain segments that form the five strand beta barrel including loops but has no effect on the carboxy terminal 30 residues. Addition of the denaturing salt sodium perchlorate enhances ordering over the entire sequence of this fragment. Analysis of seven different substitution mutants points to a complex set of interactions between the hydrophobic segment corresponding to beta strand 5 and the remainder of the chain. General patterns in the data suggest there is a hierarchy of native-like interactions that occur transiently in the denatured state and are consistent with the overall topology of the denatured state ensemble being determined by many coupled local interactions rather than a few highly specific long-range interactions.  相似文献   

8.
The development of tertiary structure during folding of staphylococcal nuclease (SNase) was studied by time‐resolved fluorescence resonance energy transfer measured using continuous‐ and stopped‐flow techniques. Variants of this two‐domain protein containing intradomain and interdomain fluorescence donor/acceptor pairs (Trp and Cys‐linked fluorophore or quencher) were prepared to probe the intradomain and interdomain structural evolution accompanying SNase folding. The intra‐domain donor/acceptor pairs are within the β‐barrel domain (Trp27/Cys64 and Trp27/Cys97) and the interdomain pair is between the α‐helical domain and the β‐barrel domain (Trp140/Cys64). Time‐resolved energy transfer efficiency accompanying folding and unfolding at different urea concentrations was measured over a time range from 30 μs to ~10 s. Information on average donor/acceptor distances at different stages of the folding process was obtained by using a quantitative kinetic modeling approach. The average distance for the donor/acceptor pairs in the β‐barrel domain decreases to nearly native values whereas that of the interdomain donor/acceptor pairs remains unchanged in the earliest intermediate (<500 μs of refolding). This indicates a rapid nonuniform collapse resulting in an ensemble of heterogeneous conformations in which the central region of the β‐barrel domain is well developed while the C‐terminal α‐helical domain remains disordered. The distance between Trp140 and Cys64 decreases to native values on the 100‐ms time scale, indicating that the α‐helical domain docks onto the preformed β‐barrel at a late stage of the folding. In addition, the unfolded state is found to be more compact under native conditions, suggesting that changes in solvent conditions may induce a nonspecific hydrophobic collapse.  相似文献   

9.
The pH dependence of stability of staphylococcal nuclease was studied with two independent equilibrium thermodynamic approaches. First, by measurement of stability in the pH range 9 to 3.5 by fluorescence-monitored denaturation with urea (Delta), GdnHCl (Delta), and heat (Delta). Second, by numerical integration of H(+) titration curves (Delta) measured potentiometrically under native (100 mM KCl) and unfolding (6.0 M GdnHCl) conditions. The pH dependence of stability described by Delta, Delta, and Delta was comparable but significantly different from the one described by Delta. The decrease in Delta between pH 9 and pH 4 was 4 kcal/mol greater than the decrease in Delta, Delta, and Delta in the same pH range. In 6 M GdnHCl, all the ionizable groups titrated with the pK(a) values of model compounds. Therefore, Delta represents the free energy difference between the native state (N) and an ensemble of unstructured, or expanded, and highly screened conformations. In contrast, the shallower pH dependence of stability described by Delta and by Delta between pH 9 and 5 was consistent with the titration of histidines with depressed, nativelike pK(a) values in the denatured state (D). These depressed pK(a) values likely reflect long-range electrostatic interactions with the other 29 basic groups and are a consequence of the compact character of the D state. The steep change in Delta and Delta at pH < 5 suggests that near pH 5 the structural and thermodynamic character of the D state shifts toward a state in which acidic residues titrate with normal pK(a) values, presumably because the electrostatic interactions with basic residues are lost, maybe as a consequence of an expansion.  相似文献   

10.
D J Weber  A K Meeker  A S Mildvan 《Biochemistry》1991,30(25):6103-6114
The mechanism of the phosphodiesterase reaction catalyzed by staphylococcal nuclease is believed to involve concerted general acid-base catalysis by Arg-87 and Glu-43. The mutual interactions of Arg-87 and Glu-43 were investigated by comparing kinetic and thermodynamic properties of the single mutant enzymes E43S (Glu-43 to Ser) and R87G (Arg-87 to Gly) with those of the double mutant, E43S + R87G, in which both the basic and acidic functions have been inactivated. Denaturation studies with guanidinium chloride, CD, and 600-MHz 1D and 2D proton NMR spectra, indicate all enzyme forms to be predominantly folded in absence of the denaturant and reveal small antagonistic effects of the E43S and R87G mutations on the stability and structure of the wild-type enzyme. The free energies of binding of the divalent cation activator Ca2+, the inhibitor Mn2+, and the substrate analogue 3',5'-pdTp show simple additive effects of the two mutations in the double mutant, indicating that Arg-87 and Glu-43 act independently to facilitate the binding of divalent cations and of 3',5'-pdTP by the wild-type enzyme. The free energies of binding of the substrate, 5'-pdTdA, both in binary E-S and in active ternary E-Ca(2+)-S complexes, show synergistic effects of the two mutations, suggesting that Arg-87 and Glu-43 interact anticooperatively in binding the substrate, possibly straining the substrate by 1.6 kcal/mol in the wild-type enzyme. The large free energy barriers to Vmax introduced by the R87G mutation (delta G1 = 6.5 kcal/mol) and by the E43S mutation (delta G2 = 5.0 kcal/mol) are partially additive in the double mutant (delta G1+2 = 8.1 kcal/mol). These partially additive effects on Vmax are most simply explained by a cooperative component to transition state binding by Arg-87 and Glu-43 of -3.4 kcal/mol. The combination of anticooperative, cooperative, and noncooperative effects of Arg-87 and Glu-43 together lower the kinetic barrier to catalysis by 8.1 kcal/mol.  相似文献   

11.
The Glu-43 residue of staphylococcal nuclease has been proposed to function as a general base that facilitates the attack of water on the phosphodiester substrate [Cotton, F. A., Hazen, E. E., & Legg, M. J. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 2551-2555]. With DNA as substrate, Vmax in the glutamate-43--serine (E43S) mutant enzyme is decreased by 2700-fold at pH 7.4 but only 376-fold at pH 9.9. With the wild-type enzyme, Vmax increases with pH to pH 9.2, above which it becomes less sensitive to further increase in pH, leveling off at pH 9.8. In contrast, Vmax of the E43S mutant continues to rise, first order in [OH-], to pH 9.8. Above pH 10 both activities fall irreversible. Hence the hydroxyl ion can partially replace the effect of Glu-43 on kcat, in accord with the proposed role of Glu-43 as a general base. The inflection point in the curve relating pH to log Vmax of the wild-type enzyme at pH 9.4 may reflect the ionization of a Ca2+-bound water, or of a Lys or Tyr residue at the active site. The activator Ca2+ and the competitive inhibitor Mn2+ bind to the E43S mutant an order of magnitude more weakly than to the wild-type enzyme as detected by kinetics and by direct metal binding studies, and approximately one additional water ligand on Mn2+ is found in the binary Mn2+ complex of the E43S mutant (1.4 +/- 0.2) as compared to that of the wild-type enzyme (0.8 +/- 0.2). These data suggest that Glu-43 coordinates the divalent cation in the binary enzyme-metal complex but dissociates from the metal to create a water binding site and to function as a general base in the ternary enzyme-metal-DNA complex. While a 2-fold weaker binding of DNA to the Ca2+ complex of the E43S mutant than to the wild-type enzyme is found by kinetic studies, an order of magnitude tighter binding of the competitive inhibitor 3',5'-pdTp to the Mn2+ and Ca2+ complexes of E43S is found by direct binding studies. Distances from Co2+ to phosphorus in the ternary enzyme-Co2+-pdTp complexes reveal coordination of only the 5'-phosphate by Co2+ on the wild-type enzyme but coordination of both the 3'- and 5'-phosphates of pdTp on the E43S mutant.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
13.
Fluorescence resonance energy transfer (FRET) is one of the few methods available to measure the rate at which a folding protein collapses. Using staphylococcal nuclease in which a cysteine residue was engineered in place of Lys64, permitted FRET measurements of the distance between the donor tryptophan 140 and 5-[[2-[(iodoacetyl)-amino]ethyl]amino]naphthalene-1-sulfonic acid-labeled Cys64. These measurements were undertaken on both equilibrium partially folded intermediates at low pH (A states), as well as transient intermediates during stopped-flow refolding. The results indicate that there is an initial collapse of the protein in the deadtime of the stopped-flow instrument, corresponding to a regain of approximately 60% of the native signal, followed by three slower transients. This is in contrast to circular dichroism measurements which show only 20-25% regain of the native secondary structure in the burst phase. Thus hydrophobic collapse precedes the formation of substantial secondary structure. The first two detected transient intermediate species have FRET properties essentially identical with those of the previously characterized equilibrium A state intermediates, suggesting similar structures between the equilibrium and transient intermediates.The effects of anions on the folding of acid-unfolded staphylococcal nuclease, and urea on the unfolding of the resulting A states, indicates that in folding the protein becomes compact prior to formation of major secondary structure, whereas in unfolding the protein expands prior to major loss of secondary structure. Comparison of the kinetics of refolding of staphylococcal nuclease, monitored by FRET, and for a proline-free variant, indicate that folding occurs via two partially folded intermediates leading to a native-like species with one (or more) proline residues in a non-native conformation. For the A states an excellent correlation between compactness measured by FRET, and compactness determined from small-angle X-ray scattering, was observed. Further, a linear relationship between compactness and free energy of unfolding was noted. Formation of soluble aggregates of the A states led to dramatic enhancement of the FRET, consistent with intermolecular fluorescence energy transfer.  相似文献   

14.
Using high-sensitivity differential scanning calorimetry, we reexamined the thermodynamics of denaturation of staphylococcal nuclease. The denaturational changes in enthalpy and heat capacity were found to be functions of both temperature and pH. The denatured state of staphylococcal nuclease at pH 8.0 and high temperature has a heat capacity consistent with a fully unfolded protein completely exposed to solvent. At lower pH values, however, the heat capacity of the denatured state is lower, resulting in a lower delta Cp and delta H for the denaturation reaction. The acid-denatured protein can thus be distinguished from a completely unfolded protein by a defined difference in enthalpy and heat capacity. Comparison of circular dichroism spectra suggests that the low heat capacity of the acid-denatured protein does not result from residual helical secondary structure. The enthalpy and heat capacity changes of denaturation of a less stable mutant nuclease support the observed dependence of delta H on pH.  相似文献   

15.
Several mixed disulfide variants of staphylococcal nuclease have been produced by disulfide bond formation between nuclease V23C and methane, ethane, 1-propane, 1-n-butane, and 1-n-pentane thiols. Although CD spectroscopy shows that the native state is largely unperturbed, the stability toward urea-induced unfolding is highly dependent on the nature of the group at this position, with the methyl disulfide protein being the most stable. The variant produced by modification with iodoacetic acid, however, gives a CD spectrum indicative of an unfolded polypeptide. Thiol-disulfide exchange equilibrium constants between nuclease V23C and 2-hydroxyethyl disulfide have been measured as a function of urea concentration. Because thiol-disulfide exchange and unfolding are thermodynamically linked, the effects of a mutation (disulfide exchange) can be partitioned between various conformational states. In the case of unmodified V23C and the 2-hydroxyethyl protein mixed disulfide, significant effects in the nonnative states of nuclease are observed. Truncated forms of staphylococcal nuclease are thought to be partially folded and may be good models for early folding intermediates. We have characterized a truncated form of nuclease comprised of residues 1-135 with a V23C mutation after chemical modification of the cysteine residue. High-resolution size-exclusion chromatography indicates that modification brings about significant changes in the Stokes radius of the protein, and CD spectroscopy indicates considerable differences in the amount of secondary structure present. Measurement of the disulfide exchange equilibrium constant between this truncated protein and 2-hydroxyethyl disulfide indicate significant interactions between position 23 and the rest of the protein when the urea concentration is lower than 1.5 M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
A quadruple mutant of staphylococcal nuclease, nuclease (V66L/G79S/G88V/L108V), has been crystallized in a form well suited to moderate-to-high resolution x-ray diffraction analysis. This mutant is highly unstable; only about 20% of the protein in solution at room temperature is in its folded form. Under the crystallization conditions, the protein exhibits circular dichroism properties similar to, but not identical with, those of native wild type protein. The crystals belong to the space group P6(1)22 or P6(5)22 with unit cell dimensions of a = b = 61.1 A, c = 170.1 A and diffract to at least 2.5 A resolution. A data set complete to 3.7 A resolution has been collected and processed; attempts to determine the structure using molecular replacement techniques are under way.  相似文献   

18.
J Chen  W E Stites 《Biochemistry》2001,40(46):14004-14011
All 44 possible double mutant permutations of isoleucine, leucine, and valine were constructed in 11 pairings of six sites in the core of staphylococcal nuclease. The stabilities of these mutants were determined by guanidine hydrochloride denaturation. Comparison of the stabilities of all double mutants with those expected from addition of the corresponding single mutants showed that the effects of the two single mutations are energetically independent of each other in 30 of the double mutants. However, a substantial minority, 14, of the double mutants have stability effects that are not additive. In these cases, it appears that direct van der Waals contacts between the two side chains are present. The requirement of direct van der Waals contact for the interdependence of mutational stability effects is somewhat surprising in light of results previously reported by others. In addition, it was found that double mutants that did not alter or lower the overall number of atoms in the core and that showed nonadditive behavior were more stable than expected from addition of the effects of the corresponding single mutants. A net increase in the number of atoms in the core usually, but not always, resulted in a mutant that was less stable than expected. In contrast to previous staphylococcal nuclease double mutants, energetically significant changes to the denatured state do not appear to be occurring in these packing mutants. These conclusions imply that attempts to engineer protein stability based on single mutant data will be generally successful if overall core size is preserved and if residues are not in van der Waals contact.  相似文献   

19.
Several mutant forms of staphylococcal nuclease with one or two defined amino acid substitutions have been purified, and the effects of the altered amino acid sequence on the stability of the folded conformation have been analyzed by guanidine hydrochloride denaturation. Two nuc- mutations, which greatly reduced the level of enzyme activity accumulated in E coli colonies carrying a recombinant plasmid with the mutant nuc gene (ie, a NUC- phenotype), both result in protein unfolding at significantly lower guanidine hydrochloride concentrations than the wild-type protein, whereas three sup mutations isolated on the basis of their ability to suppress partially the NUC- phenotype of the above two mutations result in unfolding at significantly higher guanidine hydrochloride concentrations. Characterization of nuclease molecules with two different amino acid substitutions, either nuc- + sup pairs or sup + sup pairs, suggests that the effect of an amino acid substitution on the stability of the native conformation, as measured by the value of delta delta GD, may not be a constant, but rather a variable that is sensitive to the presence of other substitutions at distant sites in the same molecule. Surprisingly, the slopes of the log Kapp vs guanidine hydrochloride concentration plots vary by as much as 35% among the different proteins.  相似文献   

20.
Secretion of staphylococcal nuclease by Bacillus subtilis.   总被引:5,自引:3,他引:5       下载免费PDF全文
The staphylococcal nuclease (nuc) gene from Staphylococcus aureus has been cloned and expressed in Bacillus subtilis. The nuclease protein was expressed either from its own promoter and translation start signals, or from a combination of a B. subtilis promoter, ribosome binding site, and a signal peptide sequence. Greater than 80% of the active gene product was secreted into the medium, whereas, when a signal peptide sequence was absent, as little as 4% of the nuclease activity was found in the culture medium. Intracellular (or cell-bound) nuclease, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting, was shown to have the molecular weight of the predicted precursor protein with the signal peptide. Levels of nuclease reached 50 mg per liter in the culture medium, depending on the growth medium and the strain used. These findings indicate the prospective use of nuclease as a model system for studying secretion of heterologous proteins in B. subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号