首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract In order to study the role of gyrB in antibiotic resistance in post-ciprofloxacin therapy fluoroquinolone-resistant clinical isolates of Salmonella typhimurium , plasmid pBP548, which contains the Escherichia coli gyrB gene, was used in complementation studies. In a heterodiploid strain, the wild-type (quinolone sensitive) allele is dominant over the resistant allele therefore, eleven clinical isolates were complemented with gyrB encoded on pBP548. Only one transformant, L18pBP548, exhibited increased susceptibility to the quinolones nalidixic acid, ciprofloxacin and sparfloxacin. The amino acid sequence of the gyrase B protein from a wild-type and the pre-therapy S. typhimurium (deduced from the nucleotide sequence) was identical to that of E. coli from codons 436 to 470; however, a point mutation was identified in codon 463 of gyrB of the quinolone-resistant post-therapy isolate L18, giving rise to an amino acid substitution of serine to tyrosine.  相似文献   

3.
4.
We determined the gyrB gene sequences of all 17 hybridizations groups of Aeromonas. Phylogenetic trees showing the evolutionary relatedness of gyrB and 16S rRNA genes in the type strains of Aeromonas were compared. Using this approach, we determined the phylogenetic position of Aeromonas culicicola MTCC 3249(T), isolated from midgut of Culex quinquefasciatus. In the gyrB based-analysis A. culicicola MTCC 3249(T) grouped with A. veronii whereas, it grouped with A. jandaei in the 16S rRNA based tree. The number of nucleotide differences in 16S rRNA sequences was less than found with the gyrB sequence data. Most of the observed nucleotide differences in the gyrB gene were synonymous. The Cophenetic Correlation Coefficient (CCC) for gyrB sequences was 0.87 indicating this gene to be a better molecular chronometer compared to 16S rRNA for delineation of Aeromonas species. This strain was found to be positive for the cytolytic enterotoxin gene. PCR-Amplicon Sequence Analysis (PCR-ASA) of this gene showed that the isolate is affiliated to type I and is potentially pathogenic. These PCR-ASA results agreed in part with the gyrB sequence results.  相似文献   

5.
6.
PCR primer sets were developed for the specific amplification and sequence analyses encoding the gyrase subunit B (gyrB) of members of the family Microbacteriaceae, class Actinobacteria. The family contains species highly related by 16S rRNA gene sequence analyses. In order to test if the gene sequence analysis of gyrB is appropriate to discriminate between closely related species, we evaluate the 16S rRNA gene phylogeny of its members. As the published universal primer set for gyrB failed to amplify the responding gene of the majority of the 80 type strains of the family, three new primer sets were identified that generated fragments with a composite sequence length of about 900 nt. However, the amplification of all three fragments was successful only in 25% of the 80 type strains. In this study, the substitution frequencies in genes encoding gyrase and 16S rDNA were compared for 10 strains of nine genera. The frequency of gyrB nucleotide substitution is significantly higher than that of the 16S rDNA, and no linear correlation exists between the similarities of both molecules among members of the Microbacteriaceae. The phylogenetic analyses using the gyrB sequences provide higher resolution than using 16S rDNA sequences and seem able to discriminate between closely related species.  相似文献   

7.
We have isolated and cloned the gyrA and gyrB genes from Staphylococcus aureus. These adjacent genes encode the subunits of DNA gyrase. The nucleotide sequence of a 5.9-kb region which includes part of an upstream recF gene, the whole of gyrB and gyrA, and about 1 kb of unknown downstream sequence has been determined. The gyrB and gyrA gene sequences predict proteins of 886 and 644 amino acid residues, respectively, which have significant homologies with the gyrase subunits of Escherichia coli and Bacillus subtilis. Residues thought to be important to the structure and function of the subunits are conserved. These genes have been expressed separately by using a T7 promoter vector. N-terminal sequencing of the cloned gene products suggests that the mature GyrB subunit exists mainly with its initial five residues removed. Protein sequencing also supports the interpretation of our DNA sequencing data, which are inconsistent in several placed with the recently published sequence of the same genes (E. E. C. Margerrison, R. Hopewell, and L. M. Fisher, J. Bacteriol. 174:1596-1603, 1992).  相似文献   

8.
The homolog of the gyrB gene, which has been reported to be present in the vicinity of the initiation site of replication in bacteria, was mapped on the Mycoplasma hominis genome, and the region was subsequently sequenced. Five open reading frames were identified flanking the gyrB gene, one of which showed similarity to that which encodes the LicA protein of Haemophilus influenzae. The organization of the genes in the region showed no resemblance to that in the corresponding regions of other bacteria sequenced so far. The gyrA gene was mapped 35 kb downstream from the gyrB gene.  相似文献   

9.
Stenotrophomonas species are found commonly in environmental and clinical samples; Stenotrophomonas maltophilia is an important opportunistic pathogen of humans. Traditional phenotyping protocols, as well as genotyping by 16S rRNA gene sequence analysis, do not reliably distinguish the species of Stenotrophomonas. Sequence analyses of two targeted PCR-amplified regions of the gyrB gene, which encodes the β-subunit of DNA gyrase, enabled resolution and identification of these species. Most type strains of the different species of Stenotrophomonas exhibited more than 7% dissimilarity in the gyrB gene sequences. Among these, strains identified as the same species exhibited sequence dissimilarities up to 4.6% and 5.9% for the two regions, respectively. Strains identified as S. maltophilia, with 16S rRNA gene sequence similarities > 99.0%, were grouped within a 'S. maltophilia complex'; these organisms exhibited gyrB similarities as low as 93%. Many of these strains possessed genomic DNA similarities with the type strain of S. maltophilia CCUG 5866(T) below 70%. These data, including gyrB sequence comparisons, indicate that strains identified as S. maltophilia may comprise distinct, new species.  相似文献   

10.
We report the cloning of the gyrB gene from Streptococcus pneumoniae 533 that carries the nov-1 allele. The gyrB gene codes for a protein homologous to the gyrase B subunit of archaebacteria and eubacteria. The same amino acid substitution (Ser-127 to Leu) confers novobiocin resistance on four isolates of S. pneumoniae. This amino acid position is equivalent to Val-120 of Escherichia coli GyrB, a residue that lies inside the ATP-binding domain as revealed by the crystal structure of the protein.  相似文献   

11.
Within the phylum Bacteroidetes, the gyrB gene, encoding for the B subunit of the DNA gyrase, has been used as a phylogenetic marker for several genera closely related to Flavobacterium. The phylogenies of the complete 16S rRNA gene and the gyrB gene were compared for 33 Antarctic Flavobacterium isolates and 23 type strains from closely related Flavobacterium species. gyrB gene sequences provided a higher discriminatory power to distinguish between different Flavobacterium groups than 16S rRNA gene sequences. The gyrB gene is therefore a promising molecular marker for elucidating the phylogenetic relationships among Flavobacterium species and should be evaluated for all the other type strains of described Flavobacterium species. Combining the phylogeny of both genes, the new Antarctic Flavobacterium strains constitute 15 Flavobacterium groups, including at least 13 potentially new species together with one group of isolates probably belonging to the species Flavobacterium micromati and one group close to Flavobacterium gelidilacus.  相似文献   

12.
Greene SR  Stamm LV 《Gene》2000,253(2):259-269
The nucleotide (nt) sequence of the Treponema denticola (Td) DNA gyrase beta-subunit gene (gyrB) has been determined. Southern blot analysis of Td chromosomal DNA indicated that gyrB is present as a single copy. Approximately 3.2kb of the nt sequence 5' and 0.7kb of nucleotide sequence 3' of gyrB were obtained. Analysis of the deduced amino acid (aa) sequence revealed two complete open reading frames (ORFs) (ORF1 and ORF3) and a truncated ORF (ORF4'). ORF1 has no homology to sequences in the databases, whereas ORF3 and ORF4' have significant homology to several bacterial DnaA (replication initiator) and DnaE (DNA polymerase III) proteins respectively. RT-PCR data showed that orf1-gyrB are co-transcribed, while dnaA-dnaE are co-transcribed but in the opposite direction. These data indicated that the gene organization of the Td gyrB region is unique compared with that of other bacteria. Eighteen putative DnaA boxes with several AT-rich regions were identified in the dnaA-dnaE intergenic region, and three putative DnaA boxes were identified in the gyrB-dnaA intergenic region. Spontaneous coumermycin A(1)-resistant Td mutants were isolated and characterized. The mutants have a >20-fold higher resistance to coumermycin A(1) than wild-type Td. A single point mutation in gyrB that changed GyrB Lys(136) to Glu or Thr appears to be responsible for the coumermycin A(1) resistance.  相似文献   

13.
Commonly, 16S ribosome RNA (16S rRNA) sequence analysis has been used for identifying enteric bacteria. However, it may not always be applicable for distinguishing closely related bacteria. Therefore, we selected gyrB genes that encode the subunit B protein of DNA gyrase (a topoisomerase type II protein) as target genes. The molecular evolution rate of gyrB genes is higher than that of 16S rRNA, and gyrB genes are distributed universally among bacterial species. Microarray technology includes the methods of arraying cDNA or oligonucleotides on substrates such as glass slides while acquiring a lot of information simultaneously. Thus, it is possible to identify the enteric bacteria easily using microarray technology. We devised a simple method of rapidly identifying bacterial species through the combined use of gyrB genes and microarrays. Closely related bacteria were not identified at the species level using 16S rRNA sequence analysis, whereas they were identified at the species level based on the reaction patterns of oligonucleotides on our microarrays using gyrB genes.  相似文献   

14.
15.
16.
AIMS: To evaluate the possibility for discrimination of Bacillus cereus and B. thuringiensis using 16S rRNA and gyrB gene based PCR methods, and to obtain the sequences of the primer annealing sites so that the PCR results may be explained. METHODS AND RESULTS: Based on the sequence difference in the variable region (V1) of 16S rRNA and in the gyrB gene between B. cereus and B. thuringiensis, PCR primers specific to these Bacillus spp. were designed. When these primers were used to discriminate B. cereus and B. thuringiensis, six of 82 B. cereus strains were identified as B. thuringiensis while 67 of 73 B. thuringiensis strains were identified as B. cereus. Sequence analysis of the primer annealing sites showed that there is no clear-cut difference in the V1 region of 16S rRNA, and in the gyrB gene, between B. cereus and B. thuringiensis strains. CONCLUSIONS: Although 16S rDNA based probes and gyrB gene based PCR primers have been suggested for the discrimination of B. cereus and B. thuringiensis strains, when a large number of Bacillus strains was tested, results showed that discrimination between B. cereus and B. thuringiensis is difficult. Therefore, to distinguish B. thuringiensis from B. cereus, a single feature, such as the presence of a parasporal crystal protein or cry gene, may sometimes be reliable. SIGNIFICANCE AND IMPACT OF THE STUDY: Discrimination between B. cereus and B. thuringiensis is a challenging debate to which this paper makes a contribution.  相似文献   

17.
As 16S rRNA sequence analysis has proven inadequate for the differentiation of Bacillus cereus from closely related species, we employed the gyrase B gene (gyrB) as a molecular diagnostic marker. The gyrB genes of B. cereus JCM 2152(T), Bacillus thuringiensis IAM 12077(T), Bacillus mycoides ATCC 6462(T), and Bacillus anthracis Pasteur #2H were cloned and sequenced. Oligonucleotide PCR primer sets were designed from within gyrB sequences of the respective bacteria for the specific amplification and differentiation of B. cereus, B. thuringiensis, and B. anthracis. The results from the amplification of gyrB sequences correlated well with results obtained with the 16S rDNA-based hybridization study but not with the results of their phenotypic characterization. Some of the reference strains of both B. cereus (three serovars) and B. thuringiensis (two serovars) were not positive in PCR amplification assays with gyrB primers. However, complete sequencing of 1.2-kb gyrB fragments of these reference strains showed that these serovars had, in fact, lower homology than their originally designated species. We developed and tested a procedure for the specific detection of the target organism in boiled rice that entailed 15 h of preenrichment followed by PCR amplification of the B. cereus-specific fragment. This method enabled us to detect an initial inoculum of 0.24 CFU of B. cereus cells per g of boiled rice food homogenate without extracting DNA. However, a simple two-step filtration step is required to remove PCR inhibitory substances.  相似文献   

18.
The type strains of 27 species of the genus Microbacterium, family Microbacteriaceae, were analyzed with respect to the phylogeny of the housekeeping genes coding for DNA gyrase subunit B (gyrB), RNA-polymerase subunit B (rpoB), recombinase A (recA) and polyphosphate kinase (ppk). The resulting gene trees were compared to the 16S rRNA gene phylogeny of the same species. The topology of neighbour-joining and maximum parsimony phylogenetic trees based upon nucleic acid sequences and protein sequences of housekeeping genes differed among each other and no gene tree was identical to that of the 16S rRNA gene tree. Only some species showed consistent clustering by all genes analyzed, but the majority of species branched with different neighbours in most gene trees. The failure to phylogenetically cluster type strains into two groups based upon differences in the amino acid composition of peptidoglycan on the basis of 16S rRNA gene sequence similarity, once leading to the union of the genera Microbacterium and Aureobacterium, was also seen in the analysis of recA, rpoB and gyrB gene and protein phylogenies. Analysis of the pkk gene and protein as well as of a concatenate tree, combining sequences of all five genes (total of 3.700 nucleotides), sees members of the former genus Aureobacterium and other type strains with lysine as diagnostic diamino acid to form a coherent cluster that branches within the radiation of Microbacterium species with ornithine in the peptidoglycan.  相似文献   

19.
Isolation of Vibrio hollisae strains, particularly from the environment, is rare. This may be due, in part, to the difficulty encountered when using conventional biochemical tests to identify the microorganism. In this study, we evaluated whether two particular genes may be useful for the identification of V. hollisae. The two genes are presumed to be conserved among the bacterial species (gyrB) or among the species of the genus Vibrio (toxR). A portion of the gyrB sequence of V. hollisae was cloned by PCR using a set of degenerate primers. The sequence showed 80% identity with the corresponding Vibrio parahaemolyticus gyrB sequence. The toxR gene of V. hollisae was cloned utilizing a htpG gene probe derived from the V. parahaemolyticus htpG gene, which is known to be linked to the toxR gene in V. hollisae. The coding sequence of the cloned V. hollisae toxR gene had 59% identity with the V. parahaemolyticus toxR coding sequence. The results of DNA colony hybridization tests using the DNA probes derived from the two genes of V. hollisae indicated that these gene sequences could be utilized for differentiation of V. hollisae from other Vibrio species and from microorganisms found in marine fish. PCR methods targeting the two gene sequences were established. Both PCR methods were shown to specifically detect the respective target sequences of V. hollisae but not other organisms. A strain of V. hollisae added at a concentration of 1 to 10(2) CFU/ml to alkaline peptone water containing a seafood sample could be detected by a 4-h enrichment incubation in alkaline peptone water at 37 degrees C followed by quick DNA extraction with an extraction kit and 35-cycle PCR specific for the V. hollisae toxR gene. We conclude that screening of seafood samples by this 35-cycle, V. hollisae toxR-specific PCR, followed by isolation on a differential medium and identification by the above htpG- and toxR-targeted PCR methods, can be useful for isolation from the environment and identification of V. hollisae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号