首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of detergents of varying chemical properties has been tested for solubilisation of bovine caudate nucleus D2 dopamine receptors using [3H]spiperone binding to assay the solubilised sites. The properties of the lysophosphatidylcholine (LPC)- and 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulphonate (CHAPS)-solubilised preparations are described in detail. The preparations are truly solubilised, and sucrose density gradient and gel filtration data are reported. Specific [3H]spiperone binding in the LPC-solubilised preparation assayed at 4 degrees C is solely to D2 dopamine receptors. If the assay temperature is raised to 25 degrees C, the amount of specific [3H]spiperone binding is largely unchanged, but it forms a greater proportion of the total [3H]spiperone binding owing to a reduction in nonstereospecific (spirodecanone) [3H]spiperone binding at the higher temperature. The effect of raising the assay temperature is important as it enables more precise determinations of specific [3H]spiperone binding to be made. Part of the specific [3H]spiperone binding at 25 degrees C is to solubilised S2 serotonin receptors in addition to D2 dopamine receptors. Good correlations are observed between the affinities for binding of ligands to the solubilised D2 receptors and corresponding data obtained on membrane-bound receptors. Agonist binding in LPC-solubilised preparations is insensitive to guanine nucleotides. It is speculated that the spirodecanone sites represent, in part, proteolysed or damaged D2 dopamine, or S2 serotonin, receptors. In the CHAPS-solubilised preparation the pharmacological profile of [3H]spiperone binding is unclear when assayed at 4 degrees C, but in assays at 25 degrees C a clear serotonin S2 receptor component of specific [3H]spiperone binding can be discerned.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The compound [9-3H]SCH23390 [R-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7- ol] was synthesized, and the binding of this purportedly selective antagonist of D1 3,4-dihydroxyphenylethylamine (dopamine) receptors was characterized. The regional distribution of high-affinity, specific [3H]SCH23390 binding sites in the rat brain correlated well with levels of endogenous dopamine. Receptor densities were greatest in corpus striatum, nucleus accumbens, and olfactory tubercle; intermediate levels were found in several limbic and cortical areas, whereas few sites were detectable in cerebellum, brainstem, and ol-factory bulb. Specific binding in caudate-putamen was found to be both temperature- and pH-dependent, with optima at 25-30 degrees C and pH 7.8-8.0. Scatchard or Woolf analyses of binding in caudate-putamen suggest that most of the sites are either of a single class or of classes with similar characteristics (KD = 0.7 +/- 0.1 nM; Bmax = 347 +/- 35 fmol/mg of protein). Both dopamine and cis-flupenthixol altered the slope but not the intercept of lines generated by Scatchard analysis, suggesting a competitive mode of inhibition of [3H]SCH23390 binding. Competition for binding by dopamine or the D1 agonist SKF38393 was inhibited by guanine nucleotides, whereas GTP had little effect on the competition for binding by the antagonist cis-flupenthixol. The competition for [3H]SCH23390 binding sites by dopamine was much more sensitive to GTP than was competition for [3H]spiperone binding. These data support the hypotheses that [3H]SCH23390 binds to recognition sites that differ from those previously described using other radiolabeled dopamine antagonists and that these sites have the characteristics expected of dopamine receptors.  相似文献   

3.
The putative dopamine D4 receptor protein in rat brain was labelled and quantified autoradiographically using two selective benzamides: [3H]YM-09151-2 which labels D2, D3 and D4 dopamine receptors and [3H]Raclopride which labels D2 and D3. The difference in densities of both ligands at saturable concentrations, show a regional distribution for the putative D4 receptor in the following rank order: hippocampus > caudate putamen > olfactory tubercle = substancia nigra > nucleus accumbens core > cerebral cortex > cerebellum. A calculated value of 0.34 pmol/mg protein was attributable to D4 receptor maximum capacity in caudate putamen and was obtained after subtracting the Bmax of the ligands. Our results show that the distribution of D4 receptor only partially overlaps with the D4 mRNA localization reported earlier and is not only associated to limbic structures but to motor areas as well.  相似文献   

4.
Effect of Iron Chelators on Dopamine D2 Receptors   总被引:4,自引:4,他引:0  
Nutritional iron deficiency induced in rats causes a selective reduction of [3H]spiperone binding in caudate nucleus. This effect can be reversed by iron supplementation in vivo. The possibility that iron may be involved in the dopamine D2 receptor was investigated by examining the effect of various iron and noniron chelators on the binding of [3H]spiperone in rat caudate nucleus. Iron chelators 1,10-phenanthroline, 2,4,6-tripyridyl-s-triazine, alpha, alpha'-dipyridyl, and desferrioxamine mesylate inhibited the binding of [3H]spiperone. The inhibition by 1,10-phenanthroline was noncompetitive and reversible. In the presence of FeCl2 or FeCl3, the inhibitory effect of 1,10-phenanthroline was potentiated. Iron salts or chelators were without effect on the binding of [3H]dihydroalprenolol to beta-adrenoreceptors in caudate nucleus; thus the action of iron chelators on the dopamine D2 receptor tends to be selective. Incubation of caudate nucleus membrane prepared from iron-deficient rats with FeCl2 or FeCl3 did not reverse the diminished binding of [3H]spiperone. The present study indicates that if iron is involved in the physiological regulation of dopamine D2 agonist-antagonist binding sites, it is more complex than hitherto considered.  相似文献   

5.
The in vitro binding properties of the [125I] labeled benzamide (S(-)-N-[(1-ethyl-2-pyrrolidinyl)-methyl]-2-hydroxy-3-iodo-6-methoxy- benzamide, IBZM) were determined in bovine and mouse caudate membrane homogenates and by autoradiography of mouse brain slices. [125I]-IBZM binding is saturable and reversible with a Bmax of 373 +/- 51 fmol/mg protein and a Kd of 3.1 +/- 0.62 nM (mean +/- SD, Scatchard analyses) and 0.56 nM as calculated by association and dissociation time constants. In competition experiments, Ki values for the D-2 antagonists YM-09151-2 and spiperone are 4 orders of magnitude lower than the Ki value for the D-1 antagonist SCH-23390 and S(-)-IBZM is ten-fold more potent than R(+)-IBZM. [125I]-IBZM has a low affinity for serotonin S-2 and for alpha receptors. Therefore, it is a highly selective ligand for dopamine D-2 receptors. Autoradiographic images of brain sections incubated with [125I]-IBZM show the dopamine D-2 receptors of the striatum, nucleus accumbens and olfactory tubercle with a high ratio of specific to nonspecific binding. Thus, S(-)-IBZM, when labeled with [123I], may be useful for in vivo imaging of dopamine D-2 receptors by single photon emission computerized tomography (SPECT).  相似文献   

6.
Since previous work had shown that brain D2 3,4-dihydroxyphenylethylamine (dopamine) receptors were only partly converted from their high-affinity state to their low-affinity state, we here tested whether it was possible to obtain a complete 100% conversion of these receptors into their low-affinity state. It was first essential to resolve the components of [3H]spiperone binding to dopaminergic sites and nondopaminergic sites in rat striatal homogenates. In the presence of 50 microM S-sulpiride (to occlude the dopaminergic sites), therefore, we first determined that the residual binding of [3H]spiperone (approximately 20%) was inhibited by serotonergic agonists much more effectively than dopamine or noradrenaline, thus identifying the serotonergic component of [3H]spiperone binding. Thus, dopamine (or ADTN) inhibited the binding of [3H]spiperone at a high-affinity site (with dissociation constant of 10 nM dopamine), at a low-affinity site (with dissociation constant of 2,000 nM dopamine), and at the serotonergic site (with dissociation constant of 50,000 nM dopamine). In the absence of sodium ions, the high-affinity site was about 50% occupied by [3H]spiperone, and guanine nucleotide had no effect on this proportion. In the presence of 120 mM NaCl, however, the high-affinity site was reduced to 15% and guanine nucleotide completely eliminated this high-affinity site, 100% of the sites having been completely converted to their low-affinity state. Using [3H]N-propyl-norapomorphine to label the high-affinity state of the dopamine receptor, 50% conversion into the low-affinity state occurred at 45 mM LiCl, 69 mM NaCl, and 202 mM KCl. We conclude that it is possible to convert brain D2 dopamine receptors completely into their low-affinity state, in the presence of NaCl and a guanine nucleotide, providing that appropriate allowance is made for the serotonergic component of [3H]spiperone binding.  相似文献   

7.
The monoamine transporter of dopamine (DA), noradrenaline, and 5-hydroxytryptamine synaptic vesicles was assayed in rat and human brain homogenates by in vitro binding of [3H]dihydrotetrabenazine. [3H]Reserpine, a second ligand of the vesicular monoamine transporter, could not be used. [3H]Dihydrotetrabenazine binding in rat brain was stable after 72 h at 22 degrees C postmortem. In major human brain regions, [3H]dihydrotetrabenazine binding was specific and saturable (KD, 2.7 nM). Displacement constants by substrates or inhibitors of vesicular monoamine uptake, and regional distribution in human brain were similar to those found in rodents. The highest densities of binding sites were observed in caudate nucleus, putamen, and accumbens nucleus. In caudate nucleus and in putamen from normal human subjects, [3H]dihydrotetrabenazine binding and homovanillic acid concentration were significantly or nearly significantly correlated. A weaker correlation was found between [3H]dihydrotetrabenazine binding and DA, in association with a higher variability of DA. [3H]Dihydrotetrabenazine binding in caudate nucleus and in putamen decreased significantly with age, unlike DA and homovanillic acid concentrations. The results establish [3H]dihydrotetrabenazine as a presynaptic monoaminergic ligand of interest for studies on postmortem human brain.  相似文献   

8.
D1 dopamine receptors were identified in membranes of human nucleus caudatus, nucleus accumbens, amygdala, and globus pallidus, by the specific binding of [3H](+)-R-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-benzazepine-7 -ol [( 3H]SCH 23390). In these four brain regions, dopamine/[3H]SCH 23390 competition binding curves were computer-analyzed to a two-site model, distinguishing a high- (RH) and low- (RL) affinity site for dopamine. The ability of guanine nucleotides (0.4 mM GTP or 0.1 mM 5'-guanylylimidodiphosphate) to provoke a conversion of RH into RL was different between these brain regions. In amygdala, a complete conversion was seen, whereas there was no guanine nucleotide-effect on RH in globus pallidus. In nucleus caudatus and nucleus accumbens, guanine nucleotides provoked only a partial conversion of RH into RL, suggesting that these brain regions may contain guanine nucleotide-sensitive and -insensitive receptors. Heating of the membranes at 60 degrees C for 5 min had the same effect as guanine nucleotides. The pharmacological profiles of the guanine nucleotide-sensitive and -insensitive D1 receptors were similar, suggesting that D1 receptors in human brain are heterogeneous only with respect to their effector-coupling mechanism: guanine nucleotide-sensitive receptors, which are capable of undergoing functional coupling with Gs, and guanine nucleotide-insensitive receptors, which are not.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
On the basis of affinity differences for spiperone, two binding sites for [3H](+/-)-2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene ([3H]ADTN) in the rat brain could be distinguished: "D3" with a low and "D4" with a high affinity for spiperone. Evidence is provided that D3 and D4 sites are related to high agonist affinity states of the D1 and D2 dopamine receptors, respectively. Various well-known selective D1 and D2 agonists and antagonists showed potencies at these sites in agreement with this hypothesis. A comparison of the Bmax values for [3H]ADTN binding to D3 and D4 sites with the numbers of D1 receptors (labelled by [3H]SCH 23390) and of D2 receptors (labelled by [3H]spiperone), both in the striatum and in the mesolimbic system, indicated that under the conditions used for 3H-agonist binding experiments, both populations of D1 and D2 receptors were converted to their high agonist affinity states to a considerable, although different extent. In fact, when competition experiments with [3H]spiperone were performed under the conditions otherwise used for [3H]ADTN binding experiments (instead of the conditions usually used for antagonist binding), substantial shifts of the displacement curves of 3,4-dihydroxyphenylethylamine (dopamine) and ADTN toward higher affinities were observed. A comparison of the effects of various agonists and antagonists in the [3H]ADTN binding experiments and in functional tests revealed a significant correlation between their potencies at D4 binding sites and at D2 receptors modulating the release of [3H]acetylcholine from striatal slices. However, in the situation of the D1/D3 pair, when the measurement of adenylate cyclase activity was taken as a functional test for D1 receptors, agonists were more active in the binding than in the functional test, whereas for many antagonists the opposite was found. The results are discussed with regard to the classification and functional aspects of brain dopamine receptors.  相似文献   

10.
Dopamine D1 receptors were solubilized from canine and bovine striatal membranes with the detergent digitonin. The receptors retained the pharmacological characteristics of membrane-bound D1 receptors, as assessed by the binding of the selective antagonist [3H]SCH 23390. The binding of [3H]SCH 23390 to solubilized receptor preparations was specific, saturable, and reversible, with a dissociation constant of 5 nM. Dopaminergic antagonists and agonists inhibited [3H]SCH 23390 binding in a stereoselective and concentration-dependent manner with an appropriate rank order of potency for D1 receptors. Moreover, agonist high affinity binding to D1 receptors and its sensitivity to guanine nucleotides was preserved following solubilization, with agonist dissociation constants virtually identical to those observed with membrane-bound receptors. To ascertain the molecular basis for the existence of an agonist-high affinity receptor complex, D1 receptors labeled with [3H] dopamine (agonist) or [3H]SCH 23390 (antagonist) prior to, or following, solubilization were subjected to high pressure liquid steric-exclusion chromatography. All agonist- and antagonist-labeled receptor species elute as the same apparent molecular size. Treatment of brain membranes with the guanine nucleotide guanyl-5'-yl imidodiphosphate prior to solubilization prevented the retention of [3H]dopamine but not [3H]SCH 23390-labeled soluble receptors. This suggests that the same guanine nucleotide-dopamine D1 receptor complex formed in membranes is stable to solubilization and confers agonist high affinity binding in soluble preparations. These results contrast with those reported on the digitonin-solubilized dopamine D2 receptor, and the molecular mechanism responsible for this difference remains to be elucidated.  相似文献   

11.
Specific D2 binding in rat striatum was characterized and then the effects of chronic disruption of dopaminergic activity on antagonist and agonist binding to these sites were studied. D2 receptors were defined as those sites capable of binding [3H]spiperone in the presence of cinanserin, a 5-HT2 antagonist, but not in the presence of (+)-butaclamol, a D2 and 5-HT2 blocker. Saturation, competition, and kinetic analyses suggested that D2 receptors are a homogeneous population exhibiting more complex interactions with agonists than antagonists. Antagonist binding was monophasic and guanine nucleotide-insensitive whereas agonist binding was biphasic and guanine nucleotide-sensitive. D2 receptor density was elevated by more than 40% following dopamine depletion by 6-hydroxydopamine or chronic receptor blockade by haloperidol. However neither treatment altered the affinities or magnitudes of the high- and low-affinity components associated with agonist binding to the D2 receptor.  相似文献   

12.
Structure and functional expression of cloned rat serotonin 5HT-2 receptor.   总被引:28,自引:5,他引:23  
A complementary DNA (cDNA) encoding a serotonin receptor with 51% sequence identity to the 5HT-1C subtype was isolated from a rat brain cDNA library by homology screening. Transient expression of the cloned cDNA in mammalian cells was used to establish the pharmacological profile of the encoded receptor polypeptide. Membranes from transfected cells showed high-affinity binding of the serotonin antagonists spiperone, ketanserin and mianserin, low affinity for haloperidol (a dopamine D2 receptor antagonist), 8-OH-DPAT as well as MDL-72222 and no detectable binding of [3H]serotonin. This profile is consonant with the 5HT-2 subtype of serotonin receptors. In agreement with this assignment, serotonin increased the intracellular Ca2+ concentration and activated phosphoinositide hydrolysis in transfected mammalian cells. The agonist also elicited a current flow, blocked by spiperone, in Xenopus oocytes injected with in vitro synthesized RNA containing the cloned nucleotide sequences.  相似文献   

13.
Although dopamine agonists can recognize two states of the D2 dopamine receptor in the anterior pituitary (D2high and D2low), we examined whether the dopamine antagonists such as [3H]spiperone could recognize these two sites with different affinities. Using up to 30 concentrations of [3H]spiperone, however, we could only detect a single population of binding sites (porcine anterior pituitary homogenates) with a dissociation constant (KD) of 130 pM. When specific [3H]spiperone binding was defined by a low concentration of (+)-butaclamol (100 nM), the apparent density was low. When defined by a high concentration of (+)-butaclamol (10 microM), nonspecific sites became detectable, thus revealing two apparent populations of sites for [3H]spiperone, only one of which was specific for dopamine. Sodium chloride reduced the KD of the single population of specific D2 sites to 64 pM. Guanine nucleotide by itself had no effect on the KD, but enhanced the density by 25%. Since the density-enhancement could be eliminated by extensive washing of membranes, and could be restored by preincubation with dopamine, the nucleotide-induced elevation of D2 density appeared to be a result of the release of tightly bound endogenous dopamine. Thus, monovalent cations and guanine nucleotides appear to have separate regulatory effects on the anterior pituitary D2 receptor that modulate antagonist-receptor interactions. Several maneuvers were used to test whether [3H]spiperone could differentiate between the two agonist-detected subpopulations of sites. Twentyfold different concentrations of [3H]spiperone (47 pM and 1000 pM) were found to label identical proportions of receptors in the D2high and D2low states as detected by the agonist 6,7-dihydroxyaminotetralin (ADTN), suggesting that spiperone labelled equal proportions of D2high and D2low sites without differential affinity for them. In addition, competition of spiperone for D2high sites selectively labelled by the agonist [3H]n-propylnorapomorphine (NPA) had a virtually identical KD for spiperone as did the total D2 receptor population as determined by direct binding studies (75 pM versus 64 pM). [3H]Spiperone also bound to a uniform population of D2low sites induced by preincubation with guanine nucleotide with identical affinity as to the total D2 population. Thus, these data do not support a "reciprocal model" for the D2 receptor (i.e., antagonist having low affinity for D2high and high affinity for D2low in a manner reciprocal to agonists).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Young rats (21 days old) made nutritionally iron deficient, by feeding them a semisynthetic diet containing skimmed milk for 5 weeks, had significantly lowered hemoglobin levels (5.2 +/- 4 g/100 ml). The nonheme iron content in caudate nucleus was decreased by 47%. The behavioral response of iron-deficient rats to apomorphine (2 mg/kg) and the density of 3,4-dihydroxyphenylethylamine (dopamine) D2 receptors, as measured by [3H]spiperone binding in caudate nucleus, were significantly reduced by 70 and 53%, respectively. The possibility that nutritional iron deficiency may affect protein content in brain was investigated by measuring the apparent concentration of proteins in caudate nucleus and nucleus accumbens from iron-deficient and control animals using two-dimensional gel electrophoresis. The data indicate that iron deficiency can affect content in these two brain regions. Significant changes in the content of 10 proteins were noted in the caudate nucleus and nucleus accumbens in iron-deficient rats. The albumin level was significantly increased in both regions studied, whereas the neuron-specific enolase level was increased in the nucleus accumbens and the glial fibrillary acidic protein level was reduced in the caudate nucleus. The significance of these protein content changes, as well as a reduction in content of a 94-kilodalton protein (a molecular size similar to that of the D2 dopamine receptor), remains to be established.  相似文献   

15.
Neurotransmitter receptor alterations in Parkinson's disease.   总被引:17,自引:0,他引:17  
Neurotransmitter receptor binding for GABA, serotonin, cholinergic muscarinic and dopamine receptors and choline acetyltransferase (ChAc) activity were measured in the frontal cortex, caudate nucleus, putamen and globus pallidus from postmortem brains of 10 Parkinsonian patients and 10 controls. No changes in any of these systems were observed in the frontal cortex. In the caudaye nucleus, only the apparent dopamine receptor binding was altered with a significant 30% decrease in the Parkinsonian brain. Both cholinergic muscarinic and serotonin receptor binding were significantly altered in the putamen, the former increasing and the latter decreasing with respect to controls. In addition, ChAc activity was decreased in the putamen. In the globus pallidus, only ChAc activity was significantly changed, decreasing about 60%, with no change in neurotransmitter receptor binding. The results suggest that a progressive loss of dopaminergic receptors in the caudate nucleus may contribute to the decreased response of Parkinsonian patients to L-dopa and dopamine agonist therapy.  相似文献   

16.
The regional distribution of the dopamine and serotonin uptake sites in human brain have been assessed and compared with the distribution of the transmitters and their metabolites measured in the same brains and also with a limited regional distribution of the uptake sites in rat and sheep brain. The affinity of the uptake sites for both transmitters was determined and found to be c. 0.2 μ M in all 3 species. Most dopamine uptake in all species was in caudate and putamen samples. Many regions of the human brain showed no dopamine uptake and little dopamine uptake was seen in sheep cortex or nigral preparations. Dopamine and metabolite concentrations were highest in the caudate, putamen and substantia nigra. Most serotonin uptake was seen in the hypothalamus in all 3 species; less was observed in the striatal regions; the cortical and nigral preparations of sheep brain showed little serotonin uptake though cortical preparations of rat brain had high levels of uptake. In the human brain, other regions did not show serotonin uptake. Highest concentrations of serotonin were found in the substantia nigra and medulla, intermediate concentrations in the putamen, globus pallidus, hypothalamus, olfactory tubercle and thalamus; very low concentrations of serotonin were found in other regions. The use of the human uptake site for pharmacological studies and as a marker for monoaminergic afferents in human health and disease is discussed.  相似文献   

17.
D2 dopamine receptors from bovine brain (caudate nucleus and olfactory tubercle) have been solubilized using sodium cholate/NaCl and their glycoprotein properties studied in terms of their interaction with wheat-germ agglutinin-agarose (WGA-agarose). Under optimal conditions about 65% of the applied D2 dopamine receptors bound to WGA-agarose and could be eluted with N-acetylglucosamine. The ability of receptors to adsorb to the affinity column was shown to be dependent on the cholate and salt concentrations used. Digestion of the membrane bound D2 dopamine receptors with neuraminidase prior to solubilisation reduced the ability of the receptors to bind to WGA-agarose (50% of applied receptors bound) whereas digestion with N-acetylglucosaminidase did not significantly affect binding to WGA-agarose. Digestion with the two enzymes together resulted in a larger decrease in binding to WGA-agarose than was seen with the two enzymes alone (40% of applied receptors bound). Stepwise elution of bound receptors from the WGA-agarose columns using 2.5 mM- and 100-mM-N-acetylglucosamine showed that about 40% of the bound receptors interacted with WGA-agarose in a low-affinity manner, the remainder showing a high-affinity interaction. Neuraminidase treatment reduced the low-affinity population suggesting that the interaction of oligosaccharides bearing sialic acid with WGA-agarose is of lower affinity and that higher-affinity binding is via N-acetylglucosamine. These data are discussed in terms of the heterogeneity of carbohydrate moieties on the D2 dopamine receptors within a brain region. In all the tests applied here, however, receptors from caudate nucleus and olfactory tubercle behaved identically so their glycosylation patterns must be very similar.  相似文献   

18.
Computer-assisted quantitative analysis of radioligand binding to rat cortical S2 serotonin receptors indicates the existence of two affinity states of the same receptor population. Monophasic antagonist competition curves for [3H]ketanserin-labelled sites suggest a uniform population of receptors with one affinity state for antagonists. Biphasic competition curves of agonists suggest that agonists discriminate high- and low-agonist-affinity forms of the S2 receptors. The affinities of agonists for the high- and low-affinity states, and the apparent percentages of high agonist-affinity forms varies with different agonists. The guanine nucleotides GTP and guanyl-5'-imido-diphosphate [Gpp(NH)p], as well as divalent cations, modulate the proportion of the sites with high affinity for agonists as evidenced by their ability to shift the agonist competition curves for [3H]ketanserin-labelled S2 receptors. GTP and Gpp(NH)p effects appear to be agonist-specific, as they do not affect antagonist competition for [3H]ketanserin-labelled S2 receptors, or [3H]ketanserin binding to S2 receptors. ATP and ADP have little or no effect on the binding properties of S2 serotonin receptors, whereas GDP is less potent than GTP. The presence of these specific nucleotide effects are the first evidence suggesting involvement of a guanine nucleotide-binding protein in the mechanism of agonist interaction with the S2 serotonin receptor. In general, the binding properties of [3H]ketanserin-labelled S2 serotonin receptors strongly resemble those of adenylate-cyclase coupled receptors such as the beta-adrenergic, the alpha 2-receptor, and the D-2 dopamine receptor. This may indicate the S2 serotonin receptor is coupled to adenylate cyclase activity, through a GTP binding protein.  相似文献   

19.
A series of group specific modifying reagents were tested for their effects on [3H]spiperone binding to brain D2 dopamine receptors to identify amino acid residues at the binding site of the D2 dopamine receptor that are critical for ligand binding. The dependence of ligand binding to the receptor on the pH of the incubation medium was also examined. N-Acetylimidazole, 5,5'-dithiobis(2-nitrobenzoic acid), 1,2-cyclohexanedione, and acetic anhydride had no specific effect on [3H]spiperone binding, indicating the lack of participation of tyrosine, free sulphydryl, arginine, or primary amino groups in ligand binding to the receptor. N,N'-Dicyclohexylcarbodiimide (DCCD) potently reduced the number of [3H]spiperone binding sites, indicating that a carboxyl group is involved in ligand binding to the receptor. The effects of DCCD could be prevented by prior incubation of the receptor with D2 dopamine receptor selective compounds. The pH-binding profile for [3H]spiperone binding indicated the importance of an ionising group of pKa 5.2 for ligand binding which may be the same carboxyl group. Diethyl pyrocarbonate, the histidine modifying reagent, also inhibited [3H]spiperone binding, reducing the affinity of the receptor for this ligand but the effects were not at the ligand binding site. From the effects of pH changes on ligand binding some evidence was obtained for a second ionising group (pKa 7.0) that specifically affects the binding of substituted benzamide drugs to the receptor. It is concluded that the D2 dopamine receptor binding site contains separate but over-lapping binding regions for antagonists such as spiperone and substituted benzamide drugs. The former region contains an important carboxyl group; the latter region contains another group that may be a second carboxyl group or a histidine.  相似文献   

20.
BACKGROUND: Clozapine, the classic atypical neuroleptic, exerts therapeutic actions in schizophrenic patients unresponsive to most neuroleptics. Clozapine interacts with numerous neurotransmitter receptors, and selective actions at novel subtypes of dopamine and serotonin receptors have been proposed to explain clozapine''s unique psychotropic effects. To identify sites with which clozapine preferentially interacts in a therapeutic setting, we have characterized clozapine binding to brain membranes. MATERIALS AND METHODS: [3H]Clozapine binding was examined in rat brain membranes as well as cloned-expressed 5-HT6 serotonin receptors. RESULTS: [3H]Clozapine binds with low nanomolar affinity to two distinct sites. One reflects muscarinic receptors consistent with the drug''s anticholinergic actions. The drug competition profile of the second site most closely resembles 5HT6 serotonin receptors, though serotonin itself displays low affinity. [3H]Clozapine binding levels are similar in all brain regions examined with no concentration in the corpus striatum. CONCLUSIONS: Besides muscarinic receptors, clozapine primarily labels sites with properties resembling 5HT6 serotonin receptors. If this is also the site with which clozapine principally interacts in intact human brain, it may account for the unique beneficial actions of clozapine and other atypical neuroleptics, and provide a molecular target for developing new, safer, and more effective agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号