首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(dG-dC).poly(dG-dC) has been modified by reaction with 4-acetoxyaminoquinoline 1-oxide (Ac-4 HAQO), the ultimate carcinogen of 4-nitroquinoline 1-oxide. The circular dichroism (CD) spectra of the modified and unmodified polymers have been compared under various experimental conditions. The CD spectra were recorded in 1 mM phosphate, 50% (v/v) ethanol, 3.8 M LiCl and 95% (v/v) ethanol, conditions in which poly(dG-dC).poly(dG-dC) adopts the B-, Z-, C- and A-form respectively. In 1 mM phosphate buffer, poly(dG-dC).poly(dG-dC) modified by Ac-4 HAQO seems not to contain regions in the Z-form. Z-form induction could be progressively obtained by the addition of ethanol as follows: in the buffer with about 30% ethanol the modified polymer started to adopt the Z structure, while 40% of ethanol in the buffer was necessary for the unmodified polymer. In the 50% ethanol-1 mM phosphate buffer mixture (v/v), poly(dG-dC).poly(dG-dC) was entirely in the Z-form while poly(dG-dC).poly(dG-dC) modified by Ac-4 HAQO remained partially in the B-form. Enzymatic digestions with the nuclease S1 which is specific of the single-stranded DNA were carried out in order to support the modified poly(dG-dC).poly(dG-dC) CD study conclusions. The role played by the two major adducts on the conformational characteristics of modified polymer is discussed.  相似文献   

2.
Chlorodiethylenetriamineplatinum(II) chloride, [(dien)PtCl]Cl, bound to less than or equal to 10% of the nucleotide bases of poly(dG-dC) . poly(dG-dC) reduces the amount of ethanol necessary to bring about the B goes to Z conformational transition in proportion to the amount of platinum complex bound as monitored by CD spectroscopy. The transition may be effected by 25% ethanol with 9.3% of the bases modified polymer an ethanol with 5.4% of the bases modified. With an unmodified polymer an ethanol concentration of 55-60% is necessary to bring about the transition. The assignment of the Z conformation was supported by 31P NMR spectroscopy. This covalent modification of the DNA is reversed by treatment with cyanide ion after which the normal amount of ethanol is necessary to achieve the transition. The platinum complex shows no enhanced binding to DNA in the Z versus the B conformation. Between 20 and 33% (saturation binding) modification, [(dien)PtCl]Cl binds cooperatively to the heterocopolymer as judged by CD spectroscopy. At this high level of modification it is no longer possible to induce the Z DNA structure with ethanol. When [(dien)PtCl]Cl is bound to preformed (with ethanol) Z DNA at saturating levels the CD spectrum is altered but reverts to the spectrum of highly modified DNA upon removal of ethanol. The antitumor drug cis-diaminedichloroplatinum(II), cis-DDP, binds to poly(dG-dC) . poly(dG-dC) and alters the CD spectrum. It does not facilitate the B goes to Z conformational change, however, and actually prevents it from happening even at very high ethanol concentrations.  相似文献   

3.
The water soluble porphyrins H2TMpyP-2, H2TMpyP-4, and CuTMpyP-4 are found to bind to Z-form poly(dG-dC)2 in 60% ethanol (v/v) and to facilitate the conversion of the polymer to the B form. Metalloporphyrins with axial ligands (MnTMpyP-4, ZnTMpyP-4) interact to some degree with the Z form, but do not lead to extensive conversion to the B form. The conversion of the Z form into the B form was determined by CD titration experiments, which were used to quantitate the fraction of poly(dG-dC)2 present in each conformation. Under all conditions each bound porphyrin molecule converts multiple base pairs from Z to B. The kinetics of porphyrin reactions with Z-poly(dG-dC)2 in 60% ethanol were measured using two different detection techniques. Stopped flow spectrophotometry was used to observe the time-dependent spectral changes associated with the porphyrins during the reaction. Time-dependent changes in the poly(dG-dC)2 conformation were observed directly using CD. The porphyrin absorbance changes under the conditions of these experiments have a much shorter half time (t1/2 approximately 0.1 to 2 sec) than the CD changes (t1/2 approximately 10 sec). Thus it could be determined that a complex with spectral characteristics similar to those of the porphyrin intercalated into B-form poly(dG-dC)2 is produced while the polymer is predominantly in the Z form.  相似文献   

4.
B Malfoy  B Hartmann    M Leng 《Nucleic acids research》1981,9(21):5659-5669
Poly(dG-dC) . poly(dG-dC) was modified by chlorodiethylenetriamino platinum (II) chloride, cis-dichlorodiammine platinum (II) and trans-dichlorodiammine platinum (II), respectively. The conformation of these modified poly(dG-dC) . poly(dG-dC) was studied by circular dichroism. In 4 M Na+, the circular dichroism spectra of poly(dG-dC)dien-Pt (0 less than or equal to rb less than or equal to 0.2) are similar (rb is the amount of bound platinum per base). It is concluded that the conformation of these polymers belongs to the Z-family. Dien-Pt complexes stabilize the Z-form. The midpoint of the Z goes to B transition of poly(dG-dC)dien-Pt(0.12) is at 0.2 M NaCl. Moreover another B goes to Z transition is observed at lower salt concentration (midpoint at 6 mM NaCl). In 1 mM phosphate buffer, the stability of Z-poly(dG-dC)dien-Pt(0.12) is greatly affected by the presence of small amounts of EDTA. Poly(dG-dC) . poly(dG-dC) modified by cis-Pt and trans-Pt complexes do not adopt the Z-form even in high salt concentration.  相似文献   

5.
Modification of DNA by the carcinogen N-acetoxy-N-2-acetylaminofluorene gives two adducts, a major one at the C-8 position of guanine and a minor one at the N-2 position with differing conformations. Binding at the C-8 position results in a large distortion of the DNA helix referred to as the “base displacement model” with the carcinogen inserted into the DNA helix and the guanosine displaced to the outside. The result is increased susceptibility to nuclease S, digestion due to the presence of large, single-stranded regions in the modified DNA. In contrast, the N-2 adduct results in much less distortion of the helix and is less susceptible to nuclease S1 digestion. A third and predominant adduct is formed in vivo, the deacetylated C-8 guanine adduct. The conformation of this adduct has been investigated using the dimer dApdG as a model for DNA. The attachment of aminofluorene (AF) residues introduced smaller changes in the circular dichroism (CD) spectra of dApdG than binding of acetylaminofluorene (AAF) residues. Similarly, binding of AF residues caused lower upfield shifts for the H-2 and H-8 protons of adenine than the AAF residues. These results suggest that AF residues are less stacked with neighboring bases than AAF and induce less distortion in conformation of the modified regions than AAF. An alternative conformation of AAF-modified deoxyguanosine has been suggested based on studies of poly(dG-dC)·poly(dG-dC). Modification of this copolymer with AAF to an extent of 28% showed a CD spectrum that had the characteristics of the left-handed Z conformation seen in unmodified poly-(dG-dC)·poly(dG-dC) at high ethanol or salt concentrations. Poly(dG)·poly(dC), which docs not undergo the B to Z transition at high ethanol concentrations, did not show this type of conformational change with high AAF modification. Differences in conformation were suggested by single-strand specific nuclease S1 digestion and reactivity with anticytidine antibodies. Highly modified poly(dG-dC)·poly(dG-dC) was almost completely resistant to nuclease S1 hydrolysis, while, modified DNA and poly(dG)·poly(dC) are highly susceptible to digestion. Two possible conformations for deoxyguanosine modified at the C-8 position by AAF are compared depending on whether its position is in alternating purine-pyrimidine sequences or random sequence DNA.  相似文献   

6.
F M Chen 《Biochemistry》1985,24(22):6219-6227
Circular dichroism (CD) as well as absorption spectral measurements reveals that poly(dG-m5dC).poly(dG-m5dC) suffers more extensive covalent modification by (+)-dihydroxy-anti-epoxybenzo[a]pyrene [(+)-anti-BPDE] than its unmethylated counterpart and that the covalently attached pyrenyl moiety exhibits stronger stacking interactions with the bases in the methylated polymer as suggested by the much larger pyrenyl spectral red shifts, most likely the consequence of intercalation. Stereoselective binding properties of these polymers are evidenced by the much reduced preference for the (-) enantiomer. Modifications due to (+)-anti-BPDE on the 50 microM hexaamminecobalt induced Z DNAs are much less pronounced and much less stereoselective, with the pyrenyl spectral characteristics being distinct from those of the B form. Salt titrations on the (+)-anti-BPDE modified poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) indicate much reduced cooperativity on the B to Z transition when compared to the unmodified counterparts. Evidence also suggests that covalent modification by anti-BPDE inhibits the B to Z conversion of base pairs in its immediate vicinity, presumably through intercalative stabilization of the B conformer at high salt. In contrast to stabilizing the B conformation for the proximal base pairs, covalent lesion by (+)-anti-BPDE appears to destabilize distal base pairs with the consequence of kinetic facilitation of B to Z transformation for these regions. Interesting differential effects on the reverse Z to B transforming abilities of these two enantiomers are observed with the covalent binding of the (-) isomer showing higher potency for inducing such conversion.  相似文献   

7.
Poly(dG-m5dC)·poly(dG-m5dC) was modified by treatment with N-acetoxy-N-2-acetylaminofluorene (N-Aco-AAF) and its conformation examined by circular dichroism (CD) and susceptibility to S1 nuclease digestion. A sample with a modification level of 10% shows a CD spectrum characteristic of the Z form and is resistant to digestion by S1 nuclease. The relative reactivity of several polymers with N-Aco-AAF was shown to follow the order of ease of formation of Z DNA: poly(dG-m5dC)·poly(dG-m5dC) > poly(dG-dC)·poly(dG-dC) > poly(dG)·poly(dC). This suggests that AAF reacts more readily with Z DNA than B DNA.  相似文献   

8.
F M Chen 《Biochemistry》1985,24(19):5045-5052
Spectroscopic studies on the trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene- (anti-BPDE-) modified synthetic polynucleotide solutions reveal interesting sequence-dependent stereoselective covalent binding of anti-BPDE to DNA. Absorption spectral results indicate that the G.C polymers are much more reactive than the A.T polymers toward this metabolite and the homopolymer suffers higher modification than its corresponding alternating polynucleotide. The covalently attached anti-BPDE exhibits only a 2-3-nm red shift in the guanine-containing polynucleotide and native DNA solutions as opposed to the 8-nm red shift in poly(G) and none in the A.T polymers. Distinct stereoselectivities are exhibited by poly(dG-dC).poly(dG-dC) vs. poly(dG).poly(dC) as suggested by the oppositely signed CD in the pyrene spectral region. Comparison with the syn-BPDE modified polynucleotides reveals some interesting differences with its anti diastereomer. Significant contributions from the intercalated syn-BPDE are apparent in the modified guanine-containing polynucleotides as indicated by the appearance of 10-nm red-shifted shoulders. In contrast to the strong dependence on polynucleotides for anti-BPDE, the rate of hydrolysis of syn-BPDE appears to be insensitive to their presence in the solution. anti-BPDE modification on the 50 microM hexaamminecobalt-induced Z-form poly(dG-dC).poly(dG-dC) is much less extensive than its corresponding B form, possibly the consequence of both structural and ionic strength factors. The spectral characteristics of anti-BPDE bonded to these two forms are distinctly different, with the Z form resembling more closely those of A.T polymers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The importance of the base composition and of the conformation of nucleic acids in the reaction with the drug cis-diamminedichloroplatinum(II) has been studied by competition experiments between the drug and several double-stranded polydeoxyribonucleotides. Binding to poly(dG).poly(dC) is larger than to poly (dG-dC).poly(dG-dC). There is no preferential binding in the competition between poly(dG-dC).poly(dG-dC), poly(dA-dC).poly(dG-dT) and poly(dA-dG).poly(dC-dT). In the competition between poly(dG-dC).poly (dG-dC) (B conformation) and poly(dG-br5dC).poly(dG-br5dC) (Z conformation), the drug binds equally well to both polynucleotides. In natural DNA, modification of guanine residues in (GC)n.(GC)n sequences by the drug has been revealed by the inhibition of cleavage of these sequences by the restriction enzyme BssHII. By means of antibodies to platinated poly(dG-dC), it is shown that some of the adducts formed in platinated poly(dG-dC) are also formed in platinated pBR322 DNA. The type of adducts recognized the antibodies is not known. Thin layer chromatography of the products after chemical and enzymatic hydrolysis of platinated poly(dG-dC) suggests that interstrand cross-links are formed. Finally, the conformations of poly(dG-dC) modified either by cis-diamminedichloroplatinum(II) or by trans-diamminedichloroplatinum (II) have been compared by circular dichroism. Both the cis-isomer and the trans-isomer stabilize the Z conformation when they bind to poly(dG-m5dC) in the Z conformation. When they bind to poly(dG-m5dC) in the B conformation, the conformations of poly(dG-m5dC) modified by the cis or the trans-isomer are different. Moreover, the cis-isomer facilitates the B form-Z form transition of the unplatinated regions while the trans-isomer makes it more difficult.  相似文献   

10.
T J Thomas  R P Messner 《Biochimie》1988,70(2):221-226
The effects of Ru(NH3)(3+)6 on the conformation of poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC) were studied by circular dichroism (CD) spectroscopy. Ru(NH3)(3+)6 at very low concentrations provokes the Z-DNA conformation in both polynucleotides. In the presence of 50 mM NaCl, the concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) is 4 microM compared to 5 microM for Co(NH3)(3+)6. The half-lives of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) in the presence of 10 microM Ru(NH3)(3+)6 and Co(NHG3)(3+)6 are at 23 and 30 min, respectively. The concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-dC).poly(dG-dC) is 50 microM. These results demonstrate that Ru(NH3)(3+)6 is a highly efficient trivalent cation for the induction of B to Z transition in poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC). In contrast, Ru(NH3)(3+)6 has no significant effect on the conformation of calf thymus DNA, poly(dA-dT).poly(dA-dT) and poly(dA-dC).poly(dG-dT).  相似文献   

11.
Poly (dG-dC) . poly(dG-dC) was modified by the reaction with N-acetoxy-N-acetyl-2-aminofluorene. The conformations of poly(dG-dC) . poly(dG-dC) and of poly d(G-C)AAF were studied by circular dichroism under various experimental conditions. In 95% ethanol, the two polynucleotides adopt the A-form. In 3.9 M LiCl, the transition B-form-C-form is observed with poly(dG-dC) . poly (dG-dC) but not with poly d(G-C)AAF. In 1 mM phosphate buffer, poly d(G-C)AAF behaves as a mixture of B- and Z-form, the relative percentages depending upon the amounts of modified bases. The percentage of Z-form is decreased by addition of EDTA and is increased by addition of Mg++. Spermine favors the Z-form in modified and unmodified polynucleotides. No defect in the double helix of poly d(G-C)AAF is detected by SI endonuclease.  相似文献   

12.
The interaction of chromium(III) with poly(dG-dC) inhibits the B to Z transition and results in the condensation of the polymer at high Cr/nucleotide ratios. At low Cr/nucleotide ratios chromium(III) enhanced the ability of ethanol to induce the B to Z transition of poly(dG-dC). The effects of chromium(III) on the conformation of DNA may be related to the carcinogenicity of chromium compounds.  相似文献   

13.
The poly(dG-dC) helical duplex forms a modified, B-family structure (B*) at very high hydration and a normal B structure at slightly lower hydration. The B* structure is slightly different in sugar-phosphate and base-stacking conformations than the B structure. Increasing the hydration or decreasing the NaCl content stabilizes B* with respect to B. Poly(dG-dC) forms the Z structure at low NaCl contents when the hydration is sufficiently reduced. At moderate NaCl content, the B to Z transition is sharp and cooperative for hydration with D2O. Hydration with H2O broadens the transition which occurs at lower hydration. This suggests that hydrogen bonding is stronger in the Z structure and helps stabilize Z over B. IR spectra may be used to quantitatively estimate the fractions of B and Z structures present in a sample. Some new indicator bands are described.  相似文献   

14.
Diastereomerically pure, partially modified (in selected positions) or fully modified phosphorothioate oligomers of the [PS]-d(CG)(4) and [PS]-d(GC)(4) series were investigated with respect to their ability to adopt the left-handed conformation at high sodium chloride concentration. NaCl induces the B-Z transition of [All-S(P)R(P)-PS]-d(CG)(4) with a midpoint of transition at ca. 2 M, which is approximately 1 M less than for unmodified d(CG)(4). Also, [All-R(P)S(P)-PS]-d(GC)(4) at 5 M NaCl converts to the Z form to the extent of ca. 55%, while the unmodified d(GC)(4) counterpart does not convert at all. This enhanced ability of stereodefined phosphorothioate oligomers to adopt the Z conformation is discussed in terms of already known structural factors (hydrogen bonding and water bridges) facilitating the B-Z transition, identified for unmodified d(CG)(n) oligonucleotides. By CD spectroscopy, the [All-S(P)-PS]-d(CG)(4) oligomer at a NaCl concentration higher than 0.01 M adopts a unique conformation as assessed from the presence of an additional negative band centered at 282 nm.  相似文献   

15.
The conformation of synthetic or natural DNAs modified in vitro by covalent binding of N-AcO-A-Glu-P-3 was investigated by fluorescence and circular dichroism. In all cases, substitution occurs mainly on the C8 of guanine residues. In modified poly(dG-dC).poly(dG-dC) or poly(dA-dC).poly(dG-dT) in B conformation, A-Glu-P-3 residues interact strongly with the bases whereas in Z conformation these residues are largely exposed to the solvent and interact weakly with the bases. A-Glu-P-3 and N-acetyl-2-aminofluorene (AAF) residues are equally efficient to induce the B-Z transition of poly(dG-dC).poly(dG-dC) and of poly(dA-dC).poly(dG-dT). Modifications of poly(dG).poly(dC) and calf thymus DNA indicate strong interactions between A-Glu-P-3 and the bases.  相似文献   

16.
Abstract

The Z form of alternating poly(dG-dC)·poly(dG-dC) can be induced when the concentration of NaCl, MgCl2 or ethanol are increased. In order to obtain more information concerning this Z structure, the B?Z transition is analyzed on the same sample, both by UV spectrophotometry and electron microscopy. The procedures used in this work provide high resolution images with minimal alterations of the molecules. It is shown that at high vlaues of cations or ethanol, the polymer makes complex associations of numerous molecules stuck together parallelly. By decreasing the salt or ethanol concentrations, a progressive decondensation of the molecules is obtained. At low concentrations of Mg++ (2.10?2 M), alterations of the linear secondary structure of the molecules are observed, although the UV spectrum is of the B-type. In the presence of that low concentration of Mg++, natural DNAs (øX174 and yeast mitochondrial DNA fragment inserted in pBR) exhibit structural modifications similar to those observed with the poly(dG-dC)·poly(dG-dC). These structures mainly consist in four-stranded hairpins and loops built up by the sticking of two segments of DNA. The correlation between these intertwining of short DNA segments and the presence of potentially Z-forming sequences is discussed.  相似文献   

17.
Native and denatured DNAs and polynucleotides were modified by 4-acetoxyaminoquinoline-1-oxide, the ultimate carcinogen of 4-nitroquinoline-1-oxide (4 NQO). The N-( deoxyguanosin -C8-yl)-4-aminoquinoline-1-oxide adduct, the so-called "dG III," was quantified on the DNA and on poly(dG-dC) in absorption spectroscopy, by using a spectral property of dG III, i.e., the variation of the absorption spectrum as a function of the pH. Using the "free-dG III" absorption reference spectra, a simple graphic determination of the percentage of dG III was established by recording the absorption spectra of the 4-acetoxyaminoquinoline-1-oxide-modified polymers. It was found that the dG III adduct accounts for about 30% of the total modification in the case of native modified DNA and poly(dG-dC) and for about 70% in the case of denatured modified DNA.  相似文献   

18.
Abstract

The importance of the base composition and of the conformation of nucleic acids in the reaction with the drug cis-diamminedichloroplatinum(II) has been studied by competition experiments between the drug and several double-stranded polydeoxyribonucleotides. Binding to poly(dG)·poly(dC) is larger than to poly (dG-dC)·poly(dG-dC). There is no preferential binding in the competition between poly(dG-dC) ·poly(dG-dC), poly(dA-dC) ·poly(dG-dT) and poly(dA-dG)·poly(dC-dT). In the competition between poly(dG-dC) ·poly (dG-dC) (B conformation) and poly(dG-br5dC) ·poly(dG-br5dC) (Z conformation), the drug binds equally well to both polynucleotides. In natural DNA, modification of guanine residues in (GC)n·(GC)nsequences by the drug has been revealed by the inhibition of cleavage of these sequences by the restriction enzyme BssHII. By means of antibodies to platinated poly(dG-dC), it is shown that some of the adducts formed in platinated poly(dG-dC) are also formed in platinated pBR322 DNA. The type of adducts recognized by the antibodies is not known. Thin layer chromatography of the products after chemical and enzymatic hydrolysis of platinated poly(dG-dC) suggests that interstrand cross-links are formed. Finally, the conformations of poly(dG-m5dC) modified either by cis-diamminedichloroplatinum(II) or by trans-diammine- dichloroplatinum(II) have been compared by circular dichroism. Both the cis-isomer and the trans-isomer stabilize the Z conformation when they bind to poly(dG-m5dC) in the Z conformation. When they bind to poly(dG-m5dC) in the B conformation, the conformations of poly(dG-m5dC) modified by the cis or the trans-isomer are different. Moreover, the cis-isomer facilitates the B form-Z form transition of the unplatinated regions while the trans-isomer makes it more difficult.  相似文献   

19.
P A Mirau  R W Behling  D R Kearns 《Biochemistry》1985,24(22):6200-6211
Proton NMR relaxation measurements are used to compare the molecular dynamics of 60 base pair duplexes of B- and Z-form poly(dG-dC).poly(dG-dC). The relaxation rates of the exchangeable guanine imino protons (Gim) in H2O and in 90% D2O show that below 20 degrees C spin-lattice relaxation is exclusively from proton-proton magnetic dipolar interactions while proton-nitrogen interactions contribute about 30% to the spin-spin relaxation. The observation that the spin-lattice relaxation is nonexponential and that the initial spin-lattice relaxation rate of the Gim, G-H8 and C-H6 protons depends on the selectivity of the exciting pulse shows that spin-diffusion dominates the spin-lattice relaxation. The relaxation rates of the Gim, C-H5, and C-H6 in B- and Z-form poly(dG-dC).poly(dG-dC) cannot be explained by assuming the DNA behaves as a rigid rod. The data can be fit by assuming large-amplitude out of plane motions (+/- 30-40 degrees, tau = 1-100 ns) and fast, large-amplitude local torsional motions (+/- 25-90 degrees, tau = 0.1-1.5 ns) in addition to collective torsional motions. The results for the B and Z forms show that the rapid internal motions are similar and large in both conformations although backbone motions are slightly slower, or of lower amplitude, in Z DNA. At high temperatures (greater than 60 degrees C), imino proton exchange with solvent dominates the spin-lattice relaxation of B-form poly(dG-dC).poly(dG-dC), but in the Z form no exchange contribution (less than 2 s-1) is observed at temperatures as high as 85 degrees C. Conformational fluctuations that expose the imino protons to the solvent are strikingly different in the B and Z forms. The results obtained here are compared with those previously reported for poly(dA-dT).poly(dA-dT).  相似文献   

20.
NMR relaxation rates (T1(-1) and T2(-1)) have been determined for 23Na in aqueous salt solutions containing various types of helical double-stranded deoxyribonucleic acids. These measurements were performed on three synthetic polynucleotides having different overall conformations, poly-(dA-dT).poly(dA-dT) (alternating B-DNA), poly(dG-dC).poly(dG-dC) at low salt (B-DNA), and Br-poly(dG-dC).Br-poly(dG-dC) (left-handed Z-DNA), and on four types of natural DNA differing in base composition, Clostridium perfringens (26% GC), calf thymus (40% GC), Escherichia coli (50% GC), and Micrococcus lysodeikticus (72% GC). For all types of DNA investigated, except poly(dA-dT).poly(dA-dT), the 23Na NMR spectra measured at 21 degrees C and an applied field of 4.7 T are non-Lorentzian. These non-Lorentzian spectra were analyzed on the basis of the two-state model and the standard theory of nonexponential quadrupolar relaxation processes in order to obtain estimates of the correlation times (tau c) characteristic of the sodium nuclei associated with the various nucleic acids. All of the correlation times estimated in this way are in the range of nanoseconds. The magnitudes of these correlation times show a significant dependence on the overall conformation of the nucleic acid (B vs. Z) but not on its base composition. To investigate the concentration dependence of tau c, sodium or magnesium salts were added to solutions of Br-poly(dG-dC).Br-poly(dG-dC) (Z-DNA).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号