首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Global biodiesel production is continuously increasing and it is proportionally accompanied by a huge amount of crude glycerol (CG) as by-product. Due to its crude nature, CG has very less commercial interest; although its pure counterpart has different industrial applications. Alternatively, CG is a very good carbon source and can be used as a feedstock for fermentative hydrogen production. Further, a move of this kind has dual benefits, namely it offers a sustainable method for disposal of biodiesel manufacturing waste as well as produces biofuels and contributes in greenhouse gas (GHG) reduction. Two-stage fermentation, comprising dark and photo-fermentation is one of the most promising options available for bio-hydrogen production. In the present study, techno-economic feasibility of such a two-stage process has been evaluated. The analysis has been made based on the recent advances in fermentative hydrogen production using CG as a feedstock. The study has been carried out with special reference to North American biodiesel market; and more specifically, data available for Canadian province, Québec City have been used. Based on our techno-economic analysis, higher production cost was found to be the major bottleneck in commercial production of fermentative hydrogen. However, certain achievable alternative options for reduction of process cost have been identified. Further, the process was found to be capable in reducing GHG emissions. Bioconversion of 1 kg of crude glycerol (70 % w/v) was found to reduce 7.66 kg CO2 eq (equivalent) GHG emission, and the process also offers additional environmental benefits.  相似文献   

2.
The use and production of biofuels has risen dramatically in recent yr. Bioethanol comprises 85% of total global biofuels production, with benefits including reduction of greenhouse gas emissions and promotion of energy independence and rural economic development. Ethanol is primarily made from corn grain in the USA and sugarcane juice in Brazil. However, ethanol production using current technologies will ultimately be limited by land availability, government policy, and alternative uses for these agricultural products. Biomass feedstocks are an enormous and renewable source of fermentable sugars that could potentially provide a significant proportion of transport fuels globally. A major technical challenge in making cellulosic ethanol economically viable is the need to lower the costs of the enzymes needed to convert biomass to fermentable sugars. The expression of cellulases and hemicellulases in crop plants and their integration with existing ethanol production systems are key technologies under development that will significantly improve the process economics of cellulosic ethanol production.  相似文献   

3.
ABSTRACT: BACKGROUND: Cost-effective production of lignocellulosic biofuels remains a major financial and technical challenge at the industrial scale. A critical tool in biofuels process development is the techno-economic (TE) model, which calculates biofuel production costs using a process model and an economic model. The process model solves mass and energy balances for each unit, and the economic model estimates capital and operating costs from the process model based on economic assumptions. The process model inputs include experimental data on the feedstock composition and intermediate product yields for each unit. These experimental yield data are calculated from primary measurements. Uncertainty in these primary measurements is propagated to the calculated yields, to the process model, and ultimately to the economic model. Thus, outputs of the TE model have a minimum uncertainty associated with the uncertainty in the primary measurements. RESULTS: We calculate the uncertainty in the Minimum Ethanol Selling Price (MESP) estimate for lignocellulosic ethanol production via a biochemical conversion process: dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis and co-fermentation of the resulting sugars to ethanol. We perform a sensitivity analysis on the TE model and identify the feedstock composition and conversion yields from three unit operations (xylose from pretreatment, glucose from enzymatic hydrolysis, and ethanol from fermentation) as the most important variables. The uncertainty in the pretreatment xylose yield arises from multiple measurements, whereas the glucose and ethanol yields from enzymatic hydrolysis and fermentation, respectively, are dominated by a single measurement: the fraction of insoluble solids (fIS) in the biomass slurries. CONCLUSIONS: We calculate a $0.15/gal uncertainty in MESP from the TE model due to uncertainties in primary measurements. This result sets a lower bound on the error bars of the TE model predictions. This analysis highlights the primary measurements that merit further development to reduce the uncertainty associated with their use in TE models. While we develop and apply this mathematical framework to a specific biorefinery scenario here, this analysis can be readily adapted to other types of biorefining processes and provides a general framework for propagating uncertainty due to analytical measurements through a TE model.  相似文献   

4.
In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery.  相似文献   

5.
Climate change is currently affecting both biodiversity and human activities; land use change and greenhouse gas emissions are the main drivers. Many agricultural services are affected by the change, which in turn reflects on the basic provisioning services, which supply food, fibre and biofuels. Biofuels are getting increasing interest because of their sustainability potential. Jatropha curcas gained popularity as a biodiesel crop, due to its ease of cultivation even in harsh environmental conditions. Notwithstanding its high economic importance, few studies are available about its co‐occurrence with pests of the genus Aphthona in sub‐Saharan Africa, where these insects feed on J. curcas, leading to relevant economic losses. Using ecological niche modelling and GIS post‐modelling analyses, we infer the current and future suitable territories for both these taxa, delineating areas where J. curcas cultivations may occur without suffering the presence of Aphthona, in the context of future climate and land use changing. We introduce an area‐normalized index, the ‘Potential‐Actual Cultivation Index’, to better depict the ratio between the suitable areas shared both by the crop and its pest, and the number of actual cultivations, in a target country. Moreover, we find high economic losses (~?50%) both in terms of carbon sequestration and in biodiesel production when J. curcas co‐occur with the Aphthona cookei species group.  相似文献   

6.
Three different biodiesel production processes were simulated using the SuperPro Designer program. The process for producing biodiesel from soybean oil and methanol was designed using commercial chemical catalysts. This chemical process was compared with the biological process catalyzed by immobilized enzymes. In addition, a hybrid process consisting of catalytic biodiesel production and enzymatic glycerol carbonate production was designed and simulated for the conversion of waste glycerol to value-added chemical. Finally, the economics and productivity of these processes were evaluated to determine economic feasibility.  相似文献   

7.
The majority of environmental problems arise from the use of conventional energy sources. The liability of such problems along with the reduction of fossil energy resources has led to the global need for alternative renewable energy sources. Using renewable biofuels as energy sources is of remarkable and continuously growing importance. Producing bioethanol through conversion of waste and residual biomass can be a viable and important perspective. In the first part of this review, general concepts, approaches and considerations concerning the utilization of the most important liquid biofuels, namely biodiesel and bioethanol, are presented. Unlike biodiesel (specifically first generation biodiesel), the production of bioethanol is exclusively based on the utilization of microbial technology and fermentation engineering. In the second part of this review, the biochemistry of ethanol production, with regards to the use of hexoses, pentoses or glycerol as carbon sources, is presented and critically discussed. Differences in the glycolytic pathways between the major ethanol‐producing strains (Saccharomyces cerevisiae and Zymomonas mobilis) are presented. Regulation between respiration and fermentation in ethanol‐producing yeasts, viz. effects “Pasteur”, “Crabtree”, “Kluyver” and “Custers”, is discussed. Xylose and glycerol catabolism related with bioethanol production is also depicted and commented. The technology of the fermentation is presented along with a detailed illustration of the substrates used in the process and in pretreatment of lignocellulosic biomass, and the various fermentation configurations employed (separate hydrolysis and fermentation, simultaneous saccharification and fermentation, simultaneous saccharification and co‐fermentation and consolidated bioprocessing). Finally, the production of bioethanol under non‐aseptic conditions is presented and discussed.  相似文献   

8.
As the demand for biofuels for transportation is increasing, it is necessary to develop technologies that will allow for low-cost production of biodiesel. Conventional biodiesel is mainly produced from vegetable oil by chemical transesterification. This production, however, has relatively low land-yield and is competing for agricultural land that can be used for food production. Therefore, there is an increasing interest in developing microbial fermentation processes for production of biodiesel as this will allow for the use of a wide range of raw-materials, including sugar cane, corn, and biomass. Production of biodiesel by microbial fermentation can be divided into two different approaches, (1) indirect biodiesel production from oleaginous microbes by in vitro transesterification, and (2) direct biodiesel production from redesigned cell factories. This work reviews both microbial approaches for renewable biodiesel production and evaluates the existing challenges in these two strategies.  相似文献   

9.
Microalgae have the ability to mitigate CO2 emission and produce oil with a high productivity, thereby having the potential for applications in producing the third-generation of biofuels. The key technologies for producing microalgal biofuels include identification of preferable culture conditions for high oil productivity, development of effective and economical microalgae cultivation systems, as well as separation and harvesting of microalgal biomass and oil. This review presents recent advances in microalgal cultivation, photobioreactor design, and harvesting technologies with a focus on microalgal oil (mainly triglycerides) production. The effects of different microalgal metabolisms (i.e., phototrophic, heterotrophic, mixotrophic, and photoheterotrophic growth), cultivation systems (emphasizing the effect of light sources), and biomass harvesting methods (chemical/physical methods) on microalgal biomass and oil production are compared and critically discussed. This review aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production.  相似文献   

10.
Replacing fossil fuels with renewable fuels derived from lignocellulosic biomass can contribute to the mitigation of global warming and the economic development of rural communities. This will require lignocellulosic biofuels to become price competitive with fossil fuels. Techno-economic analyses can provide insights into which parts of the biofuel production process need to be optimized to reduce cost or energy use. We used data obtained from a pilot biorefinery to model a commercial-scale biorefinery that processes lignocellulosic biomass to ethanol, with a focus on the minimum ethanol selling price (MESP). The process utilizes a phosphoric acid-catalyzed pre-treatment of sweet sorghum bagasse followed by liquefaction and simultaneous saccharification and co-fermentation (L+SScF) of hexose and pentose sugars by an engineered Escherichia coli strain. After validating a techno-economic model developed with the SuperPro Designer software for the conversion of sugarcane bagasse to ethanol by comparing it to a published Aspen Plus model, six different scenarios were modeled for sweet sorghum bagasse Under the most optimistic scenario, the ethanol can be produced at a cost close to the energy-equivalent price of gasoline. Aside from an increase in the price of gasoline, the gap between ethanol and gasoline prices could also be bridged by either a decrease in the cost of cellulolytic enzymes or development of value-added products from lignin.  相似文献   

11.
The use of microalgal biomass (MAB) for biofuel production has been recognized since long. Despite distinct advantages of algal biofuels, however, their sustainability and economic viability is still doubtful. Overall process cost and low energy recovery need to be significantly improved. The use of MAB, after extracting primary fuels in the form of hydrogen, methane, biodiesel and bioethanol, can be one promising route. This algal biomass, collectively termed as spent microalgal biomass (SMAB), contains even up to 70% of its initial energy level and also retains nutrients including proteins, carbohydrates, and lipids. Potential application routes include diet for animals and fish, the removal of heavy metals and dyes from wastewater, and the production of bioenergy (e.g., biofuels and electricity). Unlike whole algae biomass whose applications are relatively well documented, SMAB has been studied only to limited degree. Therefore, this work gives a brief overview of various ways of SMAB applications. An insight into current status, barriers and future prospects on SMAB research is provided. The feasibility of each application is evaluated on the basis of its energy recovery, economic viability, and future perspectives are provided.  相似文献   

12.
The production of biofuels via microbial biotechnology is a very active field of research. A range of fuel molecule types are currently under consideration: alcohols, ethers, esters, isoprenes, alkenes and alkanes. At the present, the major alcohol biofuel is ethanol. The ethanol fermentation is an old technology. Ongoing efforts aim to increase yield and energy efficiency of ethanol production from biomass. n‐Butanol, another microbial fermentation product, is potentially superior to ethanol as a fuel but suffers from low yield and unwanted side‐products currently. In general, biodiesel fuels consist of fatty acid methyl esters in which the carbon derives from plants, not microbes. A new biodiesel product, called microdiesel, can be generated in engineered bacterial cells that condense ethanol with fatty acids. Perhaps the best fuel type to generate from biomass would be biohydrocarbons. Microbes are known to produce hydrocarbons such as isoprenes, long‐chain alkenes and alkanes. The biochemical mechanisms of microbial hydrocarbon biosynthesis are currently under study. Hydrocarbons and minimally oxygenated molecules may also be produced by hybrid chemical and biological processes. A broad interest in novel fuel molecules is also driving the development of new bioinformatics tools to facilitate biofuels research.  相似文献   

13.
Although biofuels such as biodiesel and bioethanol represent a secure, renewable and environmentally safe alternative to fossil fuels, their economic viability is a major concern. The implementation of biorefineries that co-produce higher value products along with biofuels has been proposed as a solution to this problem. The biorefinery model would be especially advantageous if the conversion of byproducts or waste streams generated during biofuel production were considered. Glycerol-rich streams generated in large amounts by the biofuels industry, especially during the production of biodiesel, present an excellent opportunity to establish biorefineries. Once considered a valuable 'co-product', crude glycerol is rapidly becoming a 'waste product' with a disposal cost attributed to it. Given the highly reduced nature of carbon in glycerol and the cost advantage of anaerobic processes, fermentative metabolism of glycerol is of special interest. This review covers the anaerobic fermentation of glycerol in microbes and the harnessing of this metabolic process to convert abundant and low-priced glycerol streams into higher value products, thus creating a path to viability for the biofuels industry. Special attention is given to products whose synthesis from glycerol would be advantageous when compared with their production from common sugars.  相似文献   

14.
This paper explores the economic viability of producing biofuels from Agave in Mexico and the potential for it to complement the production of tequila or mescal. We focus on Agave varieties currently being used by the tequila industry to produce two beverages, tequila and mescal, and explore the potential for biofuel production from these plants. Without competing directly with beverage production, we discuss the economic costs and benefits of converting Agave by‐products to liquid fuel as an additional value‐added product and expanding cultivation of Agave on available land. We find that the feedstock cost for biofuel from the Agave piña alone could be more than US$3 L?1 on average. This is considerably higher than the feedstock costs of corn ethanol and sugarcane ethanol. However, there may be potential to reduce these costs with higher conversion efficiencies or by using sugar present in other parts of the plant. The costs of cellulosic biofuels using the biomass from the entire plant could be lower depending on the conversion efficiency of biomass to fuel and the additional costs of harvesting, collecting and transporting that biomass.  相似文献   

15.
Lignocellulosic biomass (LB) is a promising sugar feedstock for biofuels and other high-value chemical commodities. The recalcitrance of LB, however, impedes carbohydrate accessibility and its conversion into commercially significant products. Two important factors for the overall economization of biofuel production is LB pretreatment to liberate fermentable sugars followed by conversion into ethanol. Sustainable biofuel production must overcome issues such as minimizing water and energy usage, reducing chemical usage and process intensification. Amongst available pretreatment methods, microorganism-mediated pretreatments are the safest, green, and sustainable. Native biodelignifying agents such as Phanerochaete chrysosporium, Pycnoporous cinnabarinus, Ceriporiopsis subvermispora and Cyathus stercoreus can remove lignin, making the remaining substrates amenable for saccharification. The development of a robust, integrated bioprocessing (IBP) approach for economic ethanol production would incorporate all essential steps including pretreatment, cellulase production, enzyme hydrolysis and fermentation of the released sugars into ethanol. IBP represents an inexpensive, environmentally friendly, low energy and low capital approach for second-generation ethanol production. This paper reviews the advancements in microbial-assisted pretreatment for the delignification of lignocellulosic substrates, system metabolic engineering for biorefineries and highlights the possibilities of process integration for sustainable and economic ethanol production.  相似文献   

16.
Escherichia coli is currently used by many research institutions and companies around the world as a platform organism for the development of bio-based production processes for bulk biochemicals. A given bulk biochemical bioprocess must be economically competitive with current production routes. Ideally the viability of each bioprocess should be evaluated prior to commencing research, both by metabolic network analysis (to determine the maximum theoretical yield of a given biocatalyst) and by techno-economic analysis (TEA; to determine the conditions required to make the bioprocess cost-competitive). However, these steps are rarely performed. Here we examine theoretical yields and review available TEA for bulk biochemical production in E. coli. In addition, we examine fermentation feedstocks and review recent strain engineering approaches to achieve industrially-relevant production, using examples for which TEA has been performed: ethanol, poly-3-hydroxybutyrate, and 1,3-propanediol.  相似文献   

17.
This work presents a conceptual design of an integrated biorefinery using olive tree pruning as feedstock. The biorefinery combines a state-of-the-art thermochemical technology for producing high value-added antioxidants with an energy self-sufficient biochemical platform for lignocellulosic ethanol production. These plants are integrated by exchanging energy and feedstock. The process and design parameters employed in the plant designs are based on the authors’ own lab and pilot-scale data. The paper discusses the economic dilemma of using this feedstock for producing high value-added products in small amounts versus producing large amounts of low-profit biofuels. The feasibility of this production strategy at medium scale is demonstrated via a techno-economic analysis based on total production cost for each co-product. Each plant is energy integrated, and the energy performance of the bioethanol plant is assessed by calculating the end-use-energy ratio. Both analyses are parameterized with respect to plant capacity (100–1500 t dry weight (dw)/day) and raw material price (20–100 €/ton dry weight).  相似文献   

18.
Excess greenhouse gas emissions and the concomitant effect on global warming have become significant environmental, social and economic threats. In this context, the development of renewable, carbon-neutral and economically feasible biofuels is a driving force for innovation worldwide. A lot of effort has been put into developing biodiesel from microalgae. However, there are still a number of technological, market and policy barriers that are serious obstacles to the economic feasibility and competitiveness of such biofuels. Conversely, there are also a number of business opportunities if the production of such alternative biofuel becomes part of a larger integrated system following the Biorefinery strategy. In this case, other biofuels and chemical products of high added value are produced, contributing to an overall enhancement of the economic viability of the whole integrated system. Additionally, dual purpose microalgae-bacteria-based systems for treating wastewater and production of biofuels and chemical products significantly contribute to a substantial saving in the overall cost of microalgae biomass production. These types of systems could help to improve the competitiveness of biodiesel production from microalgae, according to some recent Life Cycle Analysis studies. Furthermore, they do not compete for fresh water resources for agricultural purposes and add value to treating the wastewater itself. This work reviews the most recent and relevant information about these types of dual purpose systems. Several aspects related to the treatment of municipal and animal wastewater with simultaneous recovery of microalgae with potential for biodiesel production are discussed. The use of pre-treated waste or anaerobic effluents from digested waste as nutrient additives for weak wastewater is reviewed. Isolation and screening of microalgae/cyanobacteria or their consortia from various wastewater streams, and studies related to population dynamics in mixed cultures, are highlighted as very relevant fields of research. The species selection may depend on various factors, such as the biomass and lipid productivity of each strain, the characteristics of the wastewater, the original habitat of the strain and the climatic conditions in the treatment plant, among others. Some alternative technologies aimed at harvesting biomass at a low cost, such as cell immobilization, biofilm formation, flocculation and bio-flocculation, are also reviewed. Finally, a Biorefinery design is presented that integrates the treatment of municipal wastewater with the recovery of oleaginous microalgae, together with the use of seawater supplemented with anaerobically digested piggery waste for cultivating Arthrospira (Spirulina) and producing biogas, biodiesel, hydrogen and other high added value products. Such strategies offer new opportunities for the cost-effective and competitive production of biofuels along with valuable non-fuel products.  相似文献   

19.
Almost 90% of our energy comes from fossil fuels, which are both limited and polluting, hence the need to find alternative sources. Biofuels can provide a sustainable and renewable source of energy for the future. Recent significant advances in genetic engineering and fermentation technology have made microbial bio-based production of chemicals from renewable resources more viable. Clostridium species are considered as promising micro-organisms for the production of a wide range of chemicals for industrial use. However, a number of scientific challenges still need to be overcome to facilitate an economically viable production system. These include the use of cheap non-food-based substrates, a better understanding of the metabolic processes involved, improvement of strains through genetic engineering and innovation in process technology. This paper reviews recent developments in these areas, advancing the use of Clostridium within an industrial context especially for the production of biofuels.  相似文献   

20.

Background

While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock.

Results

Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively.

Conclusions

Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号