首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Pre‐clinical studies aimed at treating ischemic heart disease (i.e. stem cell‐ and growth factor therapy) often consider restoration of the impaired microvascular circulation as an important treatment goal. However, serial in vivo measurement hereof is often lacking. The purpose of this study was to evaluate the applicability of intracoronary pressure and flow velocity as a measure of microvascular resistance in a large animal model of chronic myocardial infarction (MI). Myocardial infarction was induced in Dalland Landrace pigs (n = 13; 68.9 ± 4.1 kg) by a 75‐min. balloon occlusion of the left circumflex artery (LCX). Intracoronary pressure and flow velocity parameters were measured simultaneously at rest and during adenosine‐induced hyperemia, using the Combowire (Volcano) before and 4 weeks after MI. Various pressure‐ and/or flow‐derived indices were evaluated. Hyperemic microvascular resistance (HMR) was significantly increased by 28% in the infarct‐related artery, based on a significantly decreased peak average peak flow velocity (pAPV) by 20% at 4 weeks post‐MI (P = 0.03). Capillary density in the infarct zone was decreased compared to the remote area (658 ± 207/mm2 versus 1650 ± 304/mm2, P = 0.017). In addition, arterioles in the infarct zone showed excessive thickening of the alpha smooth muscle actin (αSMA) positive cell layer compared to the remote area (33.55 ± 4.25 μm versus 14.64 ± 1.39 μm, P = 0.002). Intracoronary measurement of HMR successfully detected increased microvascular resistance that might be caused by the loss of capillaries and arteriolar remodelling in the chronic infarcted pig heart. Thus, HMR may serve as a novel outcome measure in pre‐clinical studies for serial assessment of microvascular circulation.  相似文献   

2.
Matrigel promotes angiogenesis in the myocardium from ischemic injury and prevents remodelling of the left ventricle. We assessed the therapeutic efficacy of intracardiac matrigel injection and matrigel‐mediated stem cell homing in a rat myocardial infarction (MI) model. Following MI, matrigel (250 μl) or phosphate‐buffered solution (PBS) was delivered by intracardiac injection. Compared to the MI control group (MI‐PBS), matrigel significantly improved left ventricular function (n= 11, P < 0.05) assessed by pressure–volume loops after 4 weeks. There is no significant difference in infarct size between MI‐matrigel (MI‐M; 21.48 ± 1.49%, n= 10) and MI‐PBS hearts (20.98 ± 1.25%, n= 10). The infarct wall thickness of left ventricle is significantly higher (P < 0.01) in MI‐M (0.72 ± 0.02 mm, n= 10) compared with MI‐PBS (0.62 ± 0.02 mm, n= 10). MI‐M hearts exhibited higher capillary density (border 130.8 ± 4.7 versus 115.4 ± 6.0, P < 0.05; vessels per high‐power field [HPF; 400×], n= 6) than MI‐PBS hearts. c‐Kit+ stem cells (38.3 ± 5.3 versus 25.7 ± 1.5 c‐Kit+ cells per HPF [630×], n= 5, P < 0.05) and CD34+ cells (13.0 ± 1.51 versus 5.6 ± 0.68 CD34+ cells per HPF [630×], n= 5, P < 0.01) were significantly more numerous in MI‐M than in MI‐PBS in the infarcted hearts (n= 5, P < 0.05). Intracardiac matrigel injection restores myocardial functions following MI, which may attribute to the improved recruitment of CD34+ and c‐Kit+ stem cells.  相似文献   

3.
4.
The objective of this study was to evaluate Spondias mombin L. (SM) pulp and its influence on cardiac remodelling after myocardial infarction (MI). Male Wistar rats were assigned to four groups: a sham group (animals underwent simulated surgery) that received standard chow (S; n = 20), an infarcted group that received standard chow (MI; n = 24), an infarcted group supplemented with 100 mg of SM/kg bodyweight/d, (MIS100; n = 23) and an infarcted group supplemented with 250 mg of SM/kg bodyweight/d (MIS250; n = 22). After 3 months of treatment, morphological, functional and biochemical analyses were performed. MI induced structural and functional changes in the left ventricle with worsening systolic and diastolic function, and SM supplementation at different doses did not influence these variables as analysed by echocardiography and an isolated heart study (P > .05). However, SM supplementation attenuated cardiac remodelling after MI, reducing fibrosis (P = .047) and hypertrophy (P = .006). Biomarkers of oxidative stress, inflammatory processes and energy metabolism were further investigated in the myocardial tissue. SM supplementation improved the efficiency of energy metabolism and decreased lipid hydroperoxide in the myocardium [group S (n = 8): 267.26 ± 20.7; group MI (n = 8): 330.14 ± 47.3; group MIS100 (n = 8): 313.8 ± 46.2; group MIS250: 294.3 ± 38.0 nmol/mg tissue; P = .032], as well as decreased the activation of the inflammatory pathway after MI. In conclusion, SM supplementation attenuated cardiac remodelling processes after MI. We also found that energy metabolism, oxidative stress and inflammation are associated with this effect. In addition, SM supplementation at the highest dose is more effective.  相似文献   

5.
Myocardial hibernation (MH) is a well‐known feature of human ischaemic cardiomyopathy (ICM), whereas its presence in human idiopathic dilated cardiomyopathy (DCM) is still controversial. We investigated the histological and molecular features of MH in left ventricle (LV) regions of failing DCM or ICM hearts. We examined failing hearts from DCM (n = 11; 41.9 ± 5.45 years; left ventricle‐ejection fraction (LV‐EF), 18 ± 3.16%) and ICM patients (n = 12; 58.08 ± 1.7 years; LVEF, 21.5 ± 6.08%) undergoing cardiac transplantation, and normal donor hearts (N, n = 8). LV inter‐ventricular septum (IVS) and antero‐lateral free wall (FW) were transmurally (i.e. sub‐epicardial, mesocardial and sub‐endocardial layers) analysed. LV glycogen content was shown to be increased in both DCM and ICM as compared with N hearts (P < 0.001), with a U‐shaped transmural distribution (lower values in mesocardium). Capillary density was homogenously reduced in both DCM and ICM as compared with N (P < 0.05 versus N), with a lower decrease independent of the extent of fibrosis in sub‐endocardial and sub‐epicardial layers of DCM as compared with ICM. HIF1‐α and nestin, recognized ischaemic molecular hallmarks, were similarly expressed in DCM‐LV and ICM‐LV myocardium. The proteomic profile was overlapping by ~50% in DCM and ICM groups. Morphological and molecular features of MH were detected in end‐stage ICM as well as in end‐stage DCM LV, despite epicardial coronary artery patency and lower fibrosis in DCM hearts. Unravelling the presence of MH in the absence of coronary stenosis may be helpful to design a novel approach in the clinical management of DCM.  相似文献   

6.
《Cytotherapy》2014,16(4):460-470
Background aimsTraditionally, stem cell therapy for myocardial infarction (MI) has been administered as a single treatment in the acute or subacute period after MI. These time intervals coincide with marked differences in the post-infarct myocardial environment, raising the prospect that repeat cell dosing could provide incremental benefit beyond a solitary intervention. This prospect was evaluated with the use of mesenchymal stromal cells (MSCs).MethodsThree groups of rats were studied. Single-therapy and dual-therapy groups received allogeneic, prospectively isolated MSCs (1 × 106 cells) by trans-epicardial injection immediately after MI, with additional dosing 1 week later in the dual-therapy cohort. Control animals received cryopreservant solution only. Left ventricular (LV) dimensions and ejection fraction (EF) were assessed by cardiac magnetic resonance immediately before MI and at 1, 2 and 4 weeks after MI.ResultsImmediate MSC treatment attenuated early myocardial damage with EF of 35.3 ± 3.1% (dual group, n = 12) and 35.2 ± 2.2% (single group, n = 15) at 1 week after MI compared with 22.1 ± 1.9% in controls (n = 17, P < 0.01). In animals receiving a second dose of MSCs, EF increased to 40.7 ± 3.1% by week 4, which was significantly higher than in the single-therapy group (EF 35.9 ± 1.8%, P < 0.05). Dual MSC treatment was also associated with greater myocardial mass and arteriolar density, with trends toward reduced myocardial fibrosis. These incremental benefits were especially observed in remote (non-infarct) segments of LV myocardium.ConclusionsRepeated stem cell intervention in both the acute and the sub-acute period after MI provides additional improvement in ventricular function beyond solitary cell dosing, largely owing to beneficial changes remote to the area of infarction.  相似文献   

7.
Since the identification of the alternative angiotensin converting enzyme (ACE)2/Ang‐(1‐7)/Mas receptor axis, renin‐angiotensin system (RAS) is a new complex target for a pharmacological intervention. We investigated the expression of RAS components in the heart and kidney during the development of hypertension and its perinatal treatment with losartan in young spontaneously hypertensive rats (SHR). Expressions of RAS genes were studied by the RT‐PCR in the left ventricle and kidney of rats: normotensive Wistar, untreated SHR, SHR treated with losartan since perinatal period until week 9 of age (20 mg/kg/day) and SHR treated with losartan only until week 4 of age and discontinued until week 9. In the hypertrophied left ventricle of SHR, cardiac expressions of Ace and Mas were decreased while those of AT1 receptor (Agtr1a) and Ace2 were unchanged. Continuous losartan administration reduced LV weight (0.43 ± 0.02; P < 0.05 versus SHR) but did not influence altered cardiac RAS expression. Increased blood pressure in SHR (149 ± 2 in SHR versus 109 ± 2 mmHg in Wistar; P < 0.05) was associated with a lower renal expressions of renin, Agtr1a and Mas and with an increase in ACE2. Continuous losartan administration lowered blood pressure to control levels (105 ± 3 mmHg; P < 0.05 versus SHR), however, only renal renin and ACE2 were significantly up‐regulated (for both P < 0.05 versus SHR). Conclusively, prevention of hypertension and LV hypertrophy development by losartan was unrelated to cardiac or renal expression of Mas. Increased renal Ace2, and its further increase by losartan suggests the influence of locally generated Ang‐(1‐7) in organ response to the developing hypertension in SHRs.  相似文献   

8.
9.
The aim of this study was to examine the effect of surgical weight reduction on cardiac structure and function and to seek the determinants of these changes. Sixty‐six severely obese adults (BMI ≥35 kg/m2) who received bariatric surgery underwent echocardiographic examination before and 3 months after surgery. At 3 months after surgery, BMI and systolic blood pressure (BP) decreased (43.3 ± 6.3 to 34.1 ± 5.6 kg/m2, P < 0.001, and 146 ± 12 to 130 ± 14 mm Hg, P < 0.001, respectively). In left ventricular (LV) geometry, the relative wall thickness (RWT) and LV mass index decreased significantly (0.43 ± 0.05 to 0.35 ± 0.05, P < 0.001, and 50 ± 11 to 39 ± 11 g/m2.7, P < 0.001, respectively) without changes in chamber size. Multivariate analyses showed change in systolic BP to be an independent predictor for the changes in RWT and LV mass index. In myocardial performance, peak systolic mitral annular velocity and all diastolic indexes showed significant improvements. We concluded that LV hypertrophy and function improved rapidly after bariatric surgery in severely obese adults. BP reduction was the major determinant for the regression of LV hypertrophy in the early stage of surgical weight reduction.  相似文献   

10.
Insulin has been shown to possess significant anti-apoptotic effect in myocardial ischemia/reperfusion (MI/R). However, the contribution by this protection of insulin to the prolonged cardiac function in rats subjected to ischemia remains unclear. The present study attempted to test whether early insulin treatment influences adverse prolonged post-ischemic cardiac structural and functional changes. Adult male rats were subjected to left anterior descending coronary artery occlusion and were randomized to receive one of the following treatments: saline (4 ml/kg/h i.v. injection beginning 10 min before the ischemia and continuing for 2 h), insulin (60 U/l, i.v. injection following the same routine, and hypodermic injection of insulin (0.5 U/ml, 1 ml/kg/d) for 3 days after the ischemia surgery) or insulin plus wortmannin (15 μg/kg i.v. injection 15 min before each insulin administration). Treatment with insulin significantly reduced infarct size, decreased plasma creatine kinase and lactate dehydrogenase activities, decreased apoptosis index and caspase-3 activity (all P < 0.01 vs. saline), and improved cardiac function 24 h after ischemia. Importantly, at the end of 4 weeks after the ischemia surgery, MI rats receiving insulin treatment showed smaller left ventricle (LV) cavity and thicker systolic interventricular septum, and increased cardiac ejection fraction and LV fractional shortening (all P < 0.05 vs. saline). Inhibition of insulin signaling with wortmannin not only blocked insulin’s anti-apoptotic effect, but also almost completely abolished effects of insulin on cardiac structure and function. These data indicate that inhibition of apoptosis by early insulin treatment alleviates chronic adverse changes in post-ischemic cardiac structure and function. Wenjuan Xing and Wenjun Yan contributed equally to this study.  相似文献   

11.
This experimental study was designed to clarify the relationship between cardiomyocyte apoptosis and tumour necrosis factor‐alpha (TNF‐α) expression, and confirm the effect of TNF‐α on cardiac dysfunction after coronary microembolization (CME) in mini‐pigs. Nineteen mini‐pigs were divided into three groups: sham‐operation group (n = 5), CME group (n = 7) and adalimumab pre‐treatment group (n = 7; TNF‐α antibody, 2 mg/kg intracoronary injection before CME). Magnetic resonance imaging (3.0‐T) was performed at baseline, 6th hour and 1 week after procedure. Cardiomyocyte apoptosis was detected by cardiac‐TUNEL staining, and caspase‐3 and caspase‐8 were detected by RT‐PCR and immunohistochemistry. Furthermore, serum TNF‐α, IL‐6 and troponin T were analysed, while myocardial expressions of TNF‐α and IL‐6 were detected. Both TNF‐α expression (serum level and myocardial expression) and average number of apoptotic cardiomyocyte nuclei were significantly increased in CME group compared with the sham‐operation group. Six hours after CME, left ventricular end‐systolic volume (LVESV) was increased and the left ventricular ejection fraction (LVEF) was decreased in CME group. Pre‐treatment with adalimumab not only significantly improved LVEF after CME (6th hour: 54.9 ± 2.3% versus 50.4 ± 3.9%, P = 0.036; 1 week: 56.7 ± 4.2% versus 52.7 ± 2.9%, P = 0.041), but also suppressed cardiomyocyte apoptosis and the expression of caspase‐3 and caspase‐8. Meanwhile, the average number of apoptotic cardiomyocytes nuclei was inversely correlated with LVEF (r = ?0.535, P = 0.022). TNF‐α‐induced cardiomyocyte apoptosis is likely involved in cardiac dysfunction after CME. TNF‐α antibody therapy suppresses cardiomyocyte apoptosis and improves early cardiac function after CME.  相似文献   

12.
《Cytokine》2010,52(3):278-285
Background: We investigated the safety and efficacy of GCSF therapy in a porcine model of ischemia–reperfusion with left ventricle ejection fraction of <45% using a clinically relevant dosing and timing regimen. Methods: MI was induced in pigs by a 90 min balloon occlusion of the left anterior descending coronary artery. Sixteen animals were randomized to either GCSF (IV bolus of 10 μg/kg at time of reperfusion, followed by SC injections of 5 μg/kg days 5–9 post-MI) or saline (control group). Inflammatory markers, bone marrow cell mobilization and LV function (echocardiography and pressure–volume measurements) were assessed at baseline, 1 and 6 weeks post-MI. Histopathology was performed 6 weeks post-MI. Results: GCSF therapy was associated with a significant increase in white blood cell counts. At week 6, GCSF therapy resulted in less deterioration of LVEF compared to control (38 ± 2% vs. 33 ± 2%, p < 0.02) and improved wall motion score index (p < 0.05). Histopathology revealed increased vascular density (p < 0.05) and a trend toward increased areas of viable myocardium compared to control (p = 0.058). Conclusion: GCSF therapy prevents further deterioration of LV function in a porcine model of MI with lower EF (<45%). These results support future clinical trials with GCSF in selected patients with larger MI.  相似文献   

13.
The chemokine CXCL16 and its receptor CXCR6 have been linked to the pathogenesis of acute and chronic cardiovascular disease. However, data on the clinical significance of CXCL16 in patients undergoing cardiac surgery with acute myocardial ischemia/reperfusion (I/R) are still lacking. Therefore, we determined CXCL16 in the serum of cardiac surgery patients and investigated its kinetics and association with the extent of organ dysfunction. 48 patients underwent conventional cardiac surgery with myocardial I/R and the use of cardiopulmonary bypass (CPB) were consecutively enrolled in the present study. We investigated the peri‐ and post‐operative profile of CXCL16. Clinical relevant data were assessed and documented throughout the entire observation period. To identify the influence of myocardial I/R and CPB on CXCL16 release data were compared to those received from patients that underwent off‐pump procedure. Pre‐operative serum CXCL16 levels were comparable to those obtained from healthy volunteers (1174 ± 55.64 pg/ml versus 1225 ± 70.94). However, CXCL16 levels significantly increased during surgery (1174 ± 55.64 versus 1442 ± 75.42 pg/ml; P = 0.0057) and reached maximum levels 6 hrs after termination of surgery (1174 ± 55.64 versus 1648 ± 74.71 pg/ml; P < 0.001). We revealed a positive correlation between the intraoperative serum levels of CXCL16 and the extent of organ dysfunction (r2 = 0.356; P = 0.031). Patients with high CXCL16 release showed an increased extent of organ dysfunction compared to patients with low CXCL16 release. Our study shows that CXCL16 is released into the circulation as a result of cardiac surgery and that high post‐operative CXCL16 levels are associated with an increased severity of post‐operative organ dysfunctions.  相似文献   

14.
The changes of left ventricular ejection fraction (LVEF) were assessed after successful recanalization of chronic total occlusions (CTO) with or without previous myocardial infarction (MI) by real-time three-dimensional echocardiography (RT3DE). 32 patients with a successfully recanalyzed CTO were included in the present prospective study. The patients were divided into group 1 without previous MI and group 2 with previous MI in the territories of total occlusion vessel that was recanalized. In addition, there was a subgroup composed of 14 patients with collateral flow or retrograde flow in group 2. In all patients, LVEF was determined by RT3DE at baseline and after 6 weeks. In group 1, the evolution of LVEF increased significantly from 59.9 ± 7.2–67.5 ± 8.7% (P < 0.05). In group 2, the evolution of LVEF increased from 48.6 ± 6.1–50.1 ± 6.4%, however, it was without statistic significance (P > 0.05). The evolution of LVEF increased from 46.8 ± 7.1–53.0 ± 7.2% (P < 0.05) in the subgroup of group 2. Left ventricular function in patients with CTO can be feasibility and actually evaluated by RT3DE. The influence of recanalization of CTO on the improvement of left ventricular function was different between MI and non-MI patients. The left ventricular function did not improve in MI patients, but improved significantly in the patients having rich collateral circulation.  相似文献   

15.
This study aimed to investigate whether Actovegin, which is a deproteinized ultrafiltrate derived from calf blood, demonstrates neuroprotective effects in a rat model of transient global cerebral ischaemia. Forty Sprague Dawley rats were subjected to four‐vessel occlusion to induce transient global cerebral ischaemia followed by either saline or Actovegin treatment. Sham operations were performed on 15 rats. Actovegin (200 mg/kg) or saline was administered 6 hrs after carotid artery occlusion and then daily until Day 40. Learning and memory were evaluated using the Morris water maze test over two different 5‐day periods, and grip strength testing was also performed to control for potential motor impairments. Rat brains were harvested for histological analysis on Day 68. In comparison to controls, Actovegin‐treated rats exhibited a decreased latency to reach the hidden platform on the second learning trial of water maze testing (46.82 ± 6.18 versus 27.64 ± 4.53 sec., P < 0.05; 38.3 ± 8.23 versus 13.37 ± 2.73 sec., P < 0.01 for the first and second 5‐day testing periods, respectively). In addition, Actovegin‐treated rats spent more time in the platform quadrant than saline‐treated rats during memory trials (P < 0.05). No differences in grip strength were detected. Histological analyses demonstrated increased cell survival in the CA1 region of the hippocampus following Actovegin treatment (left hemisphere, 166 ± 50 versus 332 ± 27 cells, P < 0.05; right hemisphere, 170 ± 45 versus 307 ± 28 cells, P < 0.05, in saline‐ versus Actovegin‐treated rats, respectively). In rats, Actovegin treatment improves spatial learning and memory following cerebral ischaemia, which may be related to hippocampal CA1 neuroprotection.  相似文献   

16.
Taste signalling molecules are found in the gastrointestinal (GI) tract suggesting that they participate to chemosensing. We tested whether fasting and refeeding affect the expression of the taste signalling molecule, α‐transducin (Gαtran), throughout the pig GI tract and the peptide content of Gαtran cells. The highest density of Gαtran‐immunoreactive (IR) cells was in the pylorus, followed by the cardiac mucosa, duodenum, rectum, descending colon, jejunum, caecum, ascending colon and ileum. Most Gαtran‐IR cells contained chromogranin A. In the stomach, many Gαtran‐IR cells contained ghrelin, whereas in the upper small intestine many were gastrin/cholecystokinin‐IR and a few somatostatin‐IR. Gαtran‐IR and Gαgust‐IR colocalized in some cells. Fasting (24 h) resulted in a significant decrease in Gαtran‐IR cells in the cardiac mucosa (29.3 ± 0.8 versus 64.8 ± 1.3, < 0.05), pylorus (98.8 ± 1.7 versus 190.8 ± 1.9, < 0.0 l), caecum (8 ± 0.01 versus 15.5 ± 0.5, < 0.01), descending colon (17.8 ± 0.3 versus 23 ± 0.6, < 0.05) and rectum (15.3 ± 0.3 versus 27.5 ± 0.7, < 0.05). Refeeding restored the control level of Gαtran‐IR cells in the cardiac mucosa. In contrast, in the duodenum and jejunum, Gαtran‐IR cells were significantly reduced after refeeding, whereas Gαtran‐IR cells density in the ileum was not changed by fasting/refeeding. These findings provide further support to the concept that taste receptors contribute to luminal chemosensing in the GI tract and suggest they are involved in modulation of food intake and GI function induced by feeding and fasting.  相似文献   

17.
The expression of the chemorepellent Sema3a is inversely related to sympathetic innervation. We investigated whether overexpression of Sema3a in the myocardial infarction (MI) border zone could attenuate sympathetic hyper‐innervation and decrease the vulnerability to malignant ventricular tachyarrhythmia (VT) in rats. Survived MI rats were randomized to phosphate buffered saline (PBS, n = 12); mock lentivirus (MLV, n = 13) and lentivirus‐mediated overexpression of Sema3a (SLV, n = 13) groups. Sham‐operated rats served as control group (CON, n = 20). Cardiac function and electrophysiological study (PES) were performed at 1 week later. Blood and tissue samples were collected for histological analysis, epinephrine (EPI), growth‐associated factor 43 (GAP43) and tyrosine hydroxylase (TH) measurements. QTc intervals were significantly shorter in SLV group than in PBS and MLV groups (168.6 ± 7.8 vs. 178.1 ± 9.5 and 180.9 ± 8.2 ms, all P < 0.01). Inducibility of VT by PES was significantly lower in the SLV group [30.8% (4/13)] than in PBS [66.7% (8/12)] and MLV [61.5% (8/13)] groups (P < 0.05). mRNA and protein expressions of Sema3a were significantly higher and the protein expression of GAP43 and TH was significantly lower at 7 days after transduction in SLV group compared with PBS, MLV and CON groups. Myocardial EPI in the border zone was also significantly lower in SLV group than in PBS and MLV group (8.73 ± 1.30 vs. 11.94 ± 1.71 and 12.24 ± 1.54 μg/g protein, P < 0.001). Overexpression of Sema3a in MI border zone could reduce the inducibility of ventricular arrhythmias by reducing sympathetic hyper‐reinnervation after infarction.  相似文献   

18.
Danqi soft capsule (DQ) is a traditional Chinese medicine containing Salvia miltiorrhiza and Panax notoginseng; it is safe and efficient in treating ischaemic heart diseases. The purpose of the present study was to assess whether DQ could prevent infarct border zone (IBZ) remodelling and decrease ventricular arrhythmias occurrence in post‐myocardial infarction (MI) stage. MI was induced by a ligation of the left anterior descending coronary artery. DQ was administered to the post‐MI rats started from 1 week after MI surgery for 4 weeks. The results showed that DQ treatment significantly attenuated tachyarrhythmia induction rates and arrhythmia score in post‐MI rats. In echocardiography, DQ improved left ventricular (LV) systolic and diastolic function. Histological assessment revealed that DQ significantly reduced fibrotic areas and myocyte areas, and increased connexin (Cx) 43 positive areas in IBZ. Western blot revealed that DQ treatment significantly reduced the protein expression levels of type I and III collagens, α‐smooth muscle actin (α‐SMA), transforming growth factor‐β1 (TGF‐β1) and Smad3 phosphorylation, while increasing Cx43 amounts. Overall, these findings mainly indicated that DQ intervention regulates interstitial fibrosis, Cx43 expression and myocyte hypertrophy by TGF‐β1/Smad3 pathway in IBZ, inhibits LV remodelling and reduces vulnerability to tachyarrhythmias after MI. This study presents a proof of concept for novel antiarrhythmic strategies in preventing IBZ remodelling, modifying the healed arrhythmogenic substrate and thus reducing susceptibility to ventricular arrhythmias in the late post‐MI period.  相似文献   

19.
Carbon monoxide (CO) is the leading cause of death by poisoning worldwide. The aim was to explore the effects of mild and severe poisoning on blood gas parameters and metabolites. Eleven pigs were exposed to CO intoxication and had blood collected before and during poisoning. Mild CO poisoning (carboxyhaemoglobin, COHb 35.2 ± 7.9%) was achieved at 32 ± 13 minutes, and severe poisoning (69.3 ± 10.2% COHb) at 64 ± 23 minutes from baseline (2.9 ± 0.5% COHb). Blood gas parameters and metabolites were measured on a blood gas analyser and nuclear magnetic resonance spectrometer, respectively. Unsupervised principal component, analysis of variance and Pearson's correlation tests were applied. A P-value ≤ .05 was considered statistically significant. Mild poisoning resulted in a 28.4% drop in oxyhaemoglobin (OHb) and 12-fold increase in COHb, while severe poisoning in a 65% drop in OHb and 24-fold increase in COHb. Among others, metabolites implicated in regulation of metabolic acidosis (lactate, P < .0001), energy balance (pyruvate, P < .0001; 3-hydroxybutyrc acid, P = .01), respiration (citrate, P = .007; succinate, P = .0003; fumarate, P < .0001), lipid metabolism (glycerol, P = .002; choline, P = .0002) and antioxidant-oxidant balance (glutathione, P = .03; hypoxanthine, P < .0001) were altered, especially during severe poisoning. Our study adds new insights into the deranged metabolism of CO poisoning and leads the way for further investigation.  相似文献   

20.
In mammalian ventricular cardiomyocytes, invaginations of the surface membrane form the transverse tubular system (T-system), which consists of transverse tubules (TTs) that align with sarcomeres and Z-lines as well as longitudinal tubules (LTs) that are present between Z-lines in some species. In many cardiac disease etiologies, the T-system is perturbed, which is believed to promote spatially heterogeneous, dyssynchronous Ca2+ release and inefficient contraction. In general, T-system characterization approaches have been directed primarily at isolated cells and do not detect subcellular T-system heterogeneity. Here, we present MatchedMyo, a matched-filter-based algorithm for subcellular T-system characterization in isolated cardiomyocytes and millimeter-scale myocardial sections. The algorithm utilizes “filters” representative of TTs, LTs, and T-system absence. Application of the algorithm to cardiomyocytes isolated from rat disease models of myocardial infarction (MI), dilated cardiomyopathy induced via aortic banding, and sham surgery confirmed and quantified heterogeneous T-system structure and remodeling. Cardiomyocytes from post-MI hearts exhibited increasing T-system disarray as proximity to the infarct increased. We found significant (p < 0.05, Welch’s t-test) increases in LT density within cardiomyocytes proximal to the infarct (12 ± 3%, data reported as mean ± SD, n = 3) versus sham (4 ± 2%, n = 5), but not distal to the infarct (7 ± 1%, n = 3). The algorithm also detected decreases in TTs within 5° of the myocyte minor axis for isolated aortic banding (36 ± 9%, n = 3) and MI cardiomyocytes located intermediate (37 ± 4%, n = 3) and proximal (34 ± 4%, n = 3) to the infarct versus sham (57 ± 12%, n = 5). Application of bootstrapping to rabbit MI tissue revealed distal sections comprised 18.9 ± 1.0% TTs, whereas proximal sections comprised 10.1 ± 0.8% TTs (p < 0.05), a 46.6% decrease. The matched-filter approach therefore provides a robust and scalable technique for T-system characterization from isolated cells through millimeter-scale myocardial sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号