首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Yi B  Cui J  Ning JN  Wang GS  Qian GS  Lu KZ 《Gene》2012,492(2):354-360
The proliferation of pulmonary artery smooth muscle cells (PASMCs) plays a role in pulmonary vascular remodeling (PVR). Recently, it was shown that vascular smooth muscular cell phenotype modulation is important for their proliferation in other diseases. However, little is known about the role of human PASMC phenotype modulation in the proliferation induced by hypoxia and its molecular mechanism during PVR. In this study, we found using primary cultured human PASMCs that hypoxia suppressed the expression of endogenous PKGIα, which was reversed by transfection with a recombinant adenovirus containing the full-length cDNA of PKGIα (Ad-PKGIα). Ad-PKGIα transfection significantly attenuated the hypoxia-induced downregulation of the expression of smooth muscle α-actin (SM-α-actin), myosin heavy chain (MHC) and calponin in PASMCs, indicating that hypoxia-induced phenotype modulation was blocked. Furthermore, flow cytometry and 3H-TdR incorporation demonstrated that hypoxia-induced PASMC proliferation was suppressed by upregulation of PKGIα. These results suggest that enhanced PKGIα expression inhibited hypoxia-induced PASMC phenotype modulation and that it could reverse the proliferation of PASMCs significantly. Moreover, our previous work has demonstrated that Akt protein is activated in the process of hypoxia-induced proliferation of human PASMCs. Interestingly, we found that Akt was not activated by hypoxia when PASMC phenotype modulation was blocked by Ad-PKGIα. This result suggests that blocking phenotype modulation might be a key up-stream regulatory target.  相似文献   

3.
目的:探讨内质网应激(ERS)对肺动脉平滑肌细胞表型转化的影响。方法:采用胶原酶Ⅰ消化法培养原代大鼠肺动脉平滑肌细胞(PASMCs),用衣霉素(TM)或4-苯基丁酸(4-PBA)诱导或抑制内ERS,MTS法评价细胞增殖情况,western blot和定量RT-PCR检测蛋白和mRNA表达情况。结果:TM呈浓度依赖性诱导内质网应激标志物GRP78和XBP1 mRNA表达;较低浓度的TM促进PASMCs增殖,高浓度(5μg/mol)使细胞凋亡;TM使PASMCs表达SM22 alpha减少,分泌Ⅰ型胶原增加;4-PBA预处理可逆转TM诱导PASMCs的SM22 alpha减少和Ⅰ型胶原分泌增加。结论:内质网应激促进肺动脉平滑肌细胞表型转化,可能是内质网应激参与肺动脉高压的机制之一。  相似文献   

4.
5.
6.
7.
Pulmonary arterial hypertension (PAH) is featured by the increase in pulmonary vascular resistance and pulmonary arterial pressure. Despite that abnormal proliferation and phenotypic changes in human pulmonary artery smooth muscle cells (HPASMCs) contributing to the pathophysiology of PAH, the underlying molecular mechanisms remain unclear. In the present study, we detected the expression of miR‐629 in hypoxia‐treated HPASMCs and explored the mechanistic role of miR‐629 in regulating HPASMC proliferation, migration and apoptosis. Hypoxia time‐dependently induced up‐regulation of miR‐629 and promoted cell viability and proliferation in HPASMCs. Treatment with miR‐629 mimics promoted HPASMCs proliferation and migration, but inhibited cell apoptosis; while knockdown of miR‐629 suppressed the cell proliferation and migration but promoted cell apoptosis in HPASMCs. The bioinformatics prediction revealed FOXO3 and PERP as downstream targets of miR‐629, and miR‐629 negatively regulated the expression of FOXO3 and PERP via targeting the 3’ untranslated regions. Enforced expression of FOXO3 or PERP attenuated the miR‐629 overexpression or hypoxia‐induced enhanced effects on HPASMC proliferation and proliferation, and the suppressive effects on HPASMC apoptosis. Furthermore, the expression of miR‐629 was up‐regulated, and the expression of FOXO3 and PERP mRNA was down‐regulated in the plasma from PAH patients when compared to healthy controls. In conclusion, the present study provided evidence regarding the novel role of miR‐629 in regulating cell proliferation, migration and apoptosis of HPASMCs during hypoxia.  相似文献   

8.
Overactive bladder (OAB) is a pervasive clinical problem involving alterations in both neurogenic and myogenic activity. While there has been some progress in understanding neurogenic inputs to OAB, the mechanisms controlling myogenic bladder activity are unclear. We report the involvement of myocardin (MYOCD) and microRNA‐1 (miR‐1) in the regulation of connexin 43 (GJA1), a major gap junction in bladder smooth muscle, and the collective role of these molecules during post‐natal bladder development. Wild‐type (WT) mouse bladders showed normal development from early post‐natal to adult including increases in bladder capacity and maintenance of normal sensitivity to cholinergic agents concurrent with down‐regulation of MYOCD and several smooth muscle cell (SMC) contractile genes. Myocardin heterozygous‐knockout mice exhibited reduced expression of Myocd mRNA and several SMC contractile genes concurrent with bladder SMC hypersensitivity that was mediated by gap junctions. In both cultured rat bladder SMC and in vivo bladders, MYOCD down‐regulated GJA1 expression through miR‐1 up‐regulation. Interestingly, adult myocardin heterozygous‐knockout mice showed normal increases in bladder and body weight but lower bladder capacity compared to WT mice. These results suggest that MYOCD down‐regulates GJA1 expression via miR‐1 up‐regulation, thereby contributing to maintenance of normal sensitivity and development of bladder capacity. J. Cell. Physiol. 228: 1819–1826, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
A hallmark of smooth muscle cell (SMC) phenotypic modulation in atherosclerosis and restenosis is suppression of SMC differentiation marker genes, proliferation, and migration. Blockade of intermediate-conductance Ca(2+)-activated K(+) channels (IKCa1) has been shown to inhibit restenosis after carotid balloon injury in the rat; however, whether IKCa1 plays a role in SMC phenotypic modulation is unknown. Our objective was to determine the role of IKCa1 channels in regulating coronary SMC phenotypic modulation and migration. In cultured porcine coronary SMCs, platelet-derived growth factor-BB (PDGF-BB) increased TRAM-34 (a specific IKCa1 inhibitor)-sensitive K(+) current 20-fold; increased IKCa1 promoter histone acetylation and c-jun binding; increased IKCa1 mRNA approximately 4-fold; and potently decreased expression of the smooth muscle differentiation marker genes smooth muscle myosin heavy chain (SMMHC), smooth muscle alpha-actin (SMalphaA), and smoothelin-B, as well as myocardin. Importantly, TRAM-34 completely blocked PDGF-BB-induced suppression of SMMHC, SMalphaA, smoothelin-B, and myocardin and inhibited PDGF-BB-stimulated migration by approximately 50%. Similar to TRAM-34, knockdown of endogenous IKCa1 with siRNA also prevented the PDGF-BB-induced increase in IKCa1 and decrease in SMMHC mRNA. In coronary arteries from high fat/high cholesterol-fed swine demonstrating signs of early atherosclerosis, IKCa1 expression was 22-fold higher and SMMHC, smoothelin-B, and myocardin expression significantly reduced in proliferating vs. nonproliferating medial cells. Our findings demonstrate that functional upregulation of IKCa1 is required for PDGF-BB-induced coronary SMC phenotypic modulation and migration and support a similar role for IKCa1 in coronary SMC during early coronary atherosclerosis.  相似文献   

10.
In this study, we investigated the role of Akt1 isoform in phenotypic change of vascular smooth muscle cells (VSMCs) and neointima formation. Laminin-induced conversion of synthetic VSMCs into contractile VSMCs was measured by expression of marker proteins for contractile VSMCs and collagen gel contraction assay. Culture of synthetic VSMCs on laminin-coated plates induced expression of marker proteins for contractile VSMCs and showed contraction in response to angiotensin II (AngII) stimulation. Silencing integrin-linked kinase attenuated activation of Akt and blocked phenotypic conversion of VSMCs resulting in the loss of AngII-dependent contraction. Laminin-induced phenotypic conversion of VSMCs was abrogated by phosphatidylinositol 3-kinase inhibitor or in cells silencing Akt1 but not Akt2. Proliferation of contractile VSMCs on laminin-coated plate was enhanced in cells silencing Akt1 whereas silencing Akt2 did not affect. Promoter activity of myocardin and SM22α was enhanced in contractile phenotype and overexpression of myocardin stimulated promoter activity of SM22α in synthetic phenotype. Promoter activity of myocardin and SM22α was reduced in cells silencing Akt1 and promoter activity of SM22α was restored by overexpression of myocardin in cells silencing Akt1. However, silencing of Akt2 affected neither promoter activity of myocardin nor SM22α. Finally, neointima formation in carotid artery ligation and high fat-diet-induced atherosclerosis was facilitated in mice lacking Akt1. This study demonstrates that Akt1 isoform stimulates laminin-induced phenotypic conversion of synthetic VSMCs by regulating the expression of myocardin. VSMCs become susceptible to shifting from contractile to synthetic phenotype by the loss of Akt1 in pathological conditions.  相似文献   

11.
12.
Increased aortic stiffness is a biomarker for subsequent adverse cardiovascular events. We have previously reported that vascular smooth muscle Src‐dependent cytoskeletal remodelling, which contributes to aortic plasticity, is impaired with ageing. Here, we use a multi‐scale approach to determine the molecular mechanisms behind defective Src‐dependent signalling in an aged C57BL/6 male mouse model. Increased aortic stiffness, as measured in vivo by pulse wave velocity, was found to have a comparable time course to that in humans. Bioinformatic analyses predicted several miRs to regulate Src‐dependent cytoskeletal remodelling. qRT‐PCR was used to determine the relative levels of predicted miRs in aortas and, notably, the expression of miR‐203 increased almost twofold in aged aorta. Increased miR‐203 expression was associated with a decrease in both mRNA and protein expression of Src, caveolin‐1 and paxillin in aged aorta. Probing with phospho‐specific antibodies confirmed that overexpression of miR‐203 significantly attenuated Src and extracellular signal regulated kinase (ERK) signalling, which we have previously found to regulate vascular smooth muscle stiffness. In addition, transfection of miR‐203 into aortic tissue from young mice increased phenylephrine‐induced aortic stiffness ex vivo, mimicking the aged phenotype. Upstream of miR‐203, we found that DNA methyltransferases (DNMT) 1, 3a, and 3b are also significantly decreased in the aged mouse aorta and that DNMT inhibition significantly increases miR‐203 expression. Thus, the age‐induced increase in miR‐203 may be caused by epigenetic promoter hypomethylation in the aorta. These findings indicate that miR‐203 promotes a re‐programming of Src/ERK signalling pathways in vascular smooth muscle, impairing the regulation of stiffness in aged aorta.  相似文献   

13.
15‐Hydroxyeicosatetraenoic acid (15‐HETE), a product of arachidonic acid (AA) catalyzed by 15‐lipoxygenase (15‐LO), plays an essential role in hypoxic pulmonary arterial hypertension. We have previously shown that 15‐HETE inhibits apoptosis in pulmonary artery smooth muscle cells (PASMCs). To test the hypothesis that such an effect is attributable to the hypoxia‐induced pulmonary vascular remodeling (PVR), we performed these studies. We found subtle thickening of proximal media/adventitia of the pulmonary arteries (PA) in rats that had been exposed to hypoxia. This was associated with an up‐regulation of the anti‐apoptotic Bcl‐2 expression and down‐regulation of pro‐apoptotic caspase‐3 and Bax expression in PA homogenates. Nordihydroguaiaretic acid (NDGA), which inhibits the generation of endogenous 15‐HETE, reversed all the alterations following hypoxia. In situ hybridization histochemistry and immunocytochemistry showed that the 15‐LO‐1 mRNA and protein were localized in pulmonary artery endothelial cells (PAECs), while the 15‐LO‐2 mRNA and protein were localized in both PAECs and PASMCs. Furthermore, the Rho‐kinase (ROCK) pathway was activated by both endogenous and exogenous 15‐HETE, alleviating the serum deprivation (SD)‐induced PASMC apoptosis. Thus, these findings indicate that 15‐HETE protects PASMC from apoptosis, contributing to pulmonary vascular medial thickening, and the effect is, at least in part, mediated via the ROCK pathway. J. Cell. Physiol. 222:82–94, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Cyclin D2 is involved in the pathology of vascular complications of type 2 diabetes mellitus (T2DM). This study investigated the role of cyclin‐D2‐regulated miRNAs in endothelial cell proliferation of T2DM. Results showed that higher glucose concentration (4.5 g/l) significantly promoted the proliferation of rat aortic endothelial cells (RAOECs), and significantly increased the expression of cyclin D2 and phosphorylation of retinoblastoma 1 (p‐RB1) in RAOECs compared with those under low glucose concentration. The cyclin D2‐3′ untranslated region is targeted by miR‐98, as demonstrated by miRNA analysis software. Western blot also confirmed that cyclin D2 and p‐RB1 expression was regulated by miR‐98. The results indicated that miR‐98 treatment can induce RAOEC apoptosis. The suppression of RAOEC growth by miR‐98 might be related to regulation of Bcl‐2, Bax and Caspase 9 expression. Furthermore, the expression levels of miR‐98 decreased in 4.5 g/l glucose‐treated cells compared with those treated by low glucose concentration. Similarly, the expression of miR‐98 significantly decreased in aortas of established streptozotocin (STZ)‐induced diabetic rat model compared with that in control rats; but cyclin D2 and p‐RB1 levels remarkably increased in aortas of STZ‐induced diabetic rats compared with those in healthy control rats. In conclusion, this study demonstrated that high glucose concentration induces cyclin D2 up‐regulation and miR‐98 down‐regulation in the RAOECs. By regulating cyclin D2, miR‐98 can inhibit human endothelial cell growth, thereby providing novel therapeutic targets for vascular complication of T2DM.  相似文献   

15.
血管平滑肌细胞(vascular smooth muscle cell,VSMC)表型转化是血管损伤性疾病动脉粥样硬化、高血压和血管成形术后再狭窄等的共同病理生理过程.平滑肌22 alpha (smooth muscle 22 alpha, SM22α) 是一种VSMC分化标志物,其表达具有平滑肌组织特异性和细胞表型特异性. 该蛋白不仅作为一种肌动蛋白细胞骨架相关蛋白参与VSMC骨架组构和收缩调节,它还参与VSMC的增殖、炎症和氧化应激等进程. 本文就SM22α 的结构特征及其在VSMC血管损伤中的作用机制进行综述.  相似文献   

16.
Epigenetic changes, particularly non‐coding RNAs, have been implicated extensively in the pathogenesis of vascular diseases. Specific miRNAs are involved in the differentiation, phenotypic switch, proliferation, apoptosis, cytokine production and matrix deposition of endothelial cells and/or vascular smooth muscle cells. MicroRNA‐125b has been studied in depth for its role in carcinogenesis with a double‐edged role; that is, it can act as an oncogene in some cancer types and as a tumour suppressor gene in others. However, cumulative evidence from the use of advanced miRNA profiling techniques and bioinformatics analysis suggests that miR‐125b can be a potential mediator and useful marker of vascular diseases. Currently, the exact role of miR‐125b in vascular diseases is not known. In this systematic review, we intend to provide an updated compilation of all the recent findings of miR‐125b in vascular diseases, using a systematic approach of retrieving data from all available reports followed by data summarization. MiR‐125b serves as a pathogenic player in multiple vascular pathologies involving endothelia and vascular smooth muscle cells and also serves as a diagnostic marker for vascular diseases. We further provide a computational biologic presentation of the complex network of miR‐125b and its target genes within the scope of vascular diseases.  相似文献   

17.
18.
血管平滑肌细胞(vascular smooth muscle cell,VSMC)表型转化是血管重塑性疾病的细胞病理学基础,血小板源性生长因子(platelet-derived growth factor,PDGF)-BB抑制平滑肌分化标志基因表达、加速其降解,是VSMC表型转化的关键。该研究用PDGF-BB刺激VSMC诱导细胞发生表型转化,利用Western blot和免疫共沉淀等技术,检测PDGF-BB对早期分化相关基因平滑肌22 alpha(smooth muscle 22 alpha,SM22α)磷酸化与泛素化的影响。实验结果显示,PDGF-BB促进VSMC增殖;上调增殖相关蛋白PCNA的表达,下调分化相关蛋白SM22α与SMα-actin的表达;诱导SM22α发生磷酸化和泛素化,而且,该过程与SM22α水平下调具有时相相关性;抑制剂阻断分析证实,ERK和PKC参与介导了PDGF-BB诱导的SM22α磷酸化。以上结果提示,在VSMCs表型转化中,PDGF-BB可能是通过激活ERK-PKC信号通路,促进SM22α的磷酸化和泛素依赖的蛋白质降解。  相似文献   

19.
One central factor in hepatopulmonary syndrome (HPS) pathogenesis is pulmonary vascular remodelling (PVR) which involves dysregulation of proliferation and migration in pulmonary microvascular endothelial cells (PMVECs). Growing evidence suggests that Apical/basolateral polarity plays an important role in cell proliferation, migration, adhesion and differentiation. In this study, we explored whether cell polarity is involved and critical in experimental HPS rats that are induced by common bile duct ligation (CBDL). Cell polarity related proteins were analysed in CBDL rats lung and PMVECs under the HPS serum stimulation by immunofluorescence assay. Cdc42/PTEN activity, cell proliferation and migration and Annexin A2 (AX2) in PMVECs were determined, respectively. Cell polarity related proteins, lost their specialized luminal localization in PMVECs of the CBDL rat. The loss of cell polarity was induced by abnormal activity of Cdc42, which was strongly enhanced by the interaction between p‐PTEN and Annexin A2 in PMVECs, after treatment with serum from CBDL rats. It led to over‐proliferation and high migration ability of PMVECs. Down‐regulation of PTEN‐Cdc42 activity in PMVECs restored cell polarity and thus reduced their ability of migration and proliferation. Our study suggested that the loss of cell polarity plays a critical role in the pathogenesis of HPS‐associated PVR and may become a potentially effective therapeutic target.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号