首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
COX‐2 (cyclo‐oxygenase 2), an inducible form of the enzyme that catalyses the first step in the synthesis of prostanoids, is associated with inflammatory diseases and carcinogenesis, which is suspected to promote angiogenesis and tissue invasion of tumours and resistance to apoptosis. COX‐2 is also involved in drug resistance and poor prognosis of many neoplastic diseases or cancers. The activation of the COX‐2/PGE2 (prostaglandin E2)/prostaglandin E receptor signal pathway can up‐regulate the expression of all three ABC (ATP‐binding‐cassette) transporters, MDR1/P‐gp (multidrug resistance/P‐glycoprotein), MRP1 (multidrug‐resistance protein 1) and BCRP (breast‐cancer‐resistance protein), which encode efflux pumps, playing important roles in the development of multidrug resistance. In addition, COX inhibitors inhibit the expression of MDR1/P‐gp, MRP1 and BCRP and enhance the cytotoxicity of anticancer drugs. Therefore we can use the COX inhibitors to potentialize the effects of chemotherapeutic agents and reverse multidrug resistance to facilitate the patient who may benefit from addition of COX inhibitors to standard cytotoxic therapy.  相似文献   

2.
The P‐glycoprotein (p170, P‐gp) encoded by human MDR1 gene functions as a pump to extrude anticancer drugs from cancer cells. Over‐expression of p170 is closely related to primary and induced drug resistance phenotype of tumor cells. Recent studies have demonstrated that expression of cyclooxygenase‐2 (COX‐2) is positively correlated with the p170 level, suggesting a potential of COX‐2 specific inhibitors in regulation of cytotoxicity of anticancer agents. Celecoxib is one of the specific inhibitors of COX‐2 and has been widely used in clinic. However, its function in the response of cancer cells to anticancer drugs and the related mechanism are still waiting to be investigated. To explore the correlation of celecoxib and the p170‐mediated drug resistance, the role of celecoxib in drug response of cancer cells was analyzed with flow cytometry, high performance liquid chromatography (HPLC), and colony formation experiments. Celecoxib (50 µM) was found to significantly enhance the sensitivity of MCF‐7 and JAR/VP16 cells to tamoxifen and etoposide, respectively, by inhibition of p170 expression and increase in intracellular accumulation of the drugs. However, celecoxib did not affect pump function of p170. Enzyme activity and methylation analyses demonstrated that the inhibitory effect of celecoxib on p170 was independent on COX‐2 but closely related to hypermethylation of MDR1 gene promoter. Our study suggested that celecoxib was a potential agent for enhancement of the sensitivity of cancer cells to anticancer drugs. It also provided a links between epigenetic change of MDR1 and drug response of cancer cells. J. Cell. Biochem. 108: 181–194, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Multidrug resistance (MDR) phenotype is characterized by the over-expression of P-glycoprotein (P-gp) on cell plasma membranes that extrudes several drugs out of cells. Cells that express the MDR phenotype are resistant to the mitochondrial related apoptosis and to several anticancer drugs. This study assessed the presence of P-gp in mitochondria and its role in parental drug-sensitive (P5) and in P5-derived MDR1 cells P1(0.5) hepatocellular carcinoma (HCC) cell lines and in drug-sensitive (PSI-2) and mdr1-transfected (PN1A) NIH/3T3 cells. By using Western blot analysis, confocal laser microscopy, measurements of Rhodamine 123 transport across mitochondrial membranes, MDR1 small interfering RNA and flow cytometry analysis, experiments indicate that P-gp is expressed in mitochondria of P1(0.5) and PN1A cells and it is functionally active. Rho 123 accumulation was largely reduced in mitochondria of P1(0.5) cells as compared to those of P5 cells; the reduced uptake of fluorescence in mitochondria of MDR cells was due to P-gp-mediated Rho 123 efflux. In conclusion, these data demonstrate that functionally active P-gp is expressed in the mitochondrial membrane of MDR-positive cells and pumps out anticancer drugs from mitochondria into cytosol. Therefore, P-gp could be involved in the protection of mitochondrial DNA from damage due to antiproliferative drugs.  相似文献   

4.
Multidrug resistance (MDR) is a major hurdle in the treatment of cancer. Research indicated that the main mechanisms of most cancers included so‐called “pump” (P‐glycoprotein, P‐gp) and “non‐pump” (apoptosis) resistance. Identification of novel signaling molecules associated with both P‐gp and apoptosis will facilitate the development of more effective strategies to overcome MDR in tumor cells. Since the proto‐oncogene c‐fos has been implicated in cell adaptation to environmental changes, we analyzed its role in mediating “pump” and “non‐pump” resistance in MCF‐7/ADR, an adriamycin (ADR)‐selected human breast cancer cell line with the MDR phenotype. Elevated expression of c‐fos in MCF‐7/ADR cells and induction of c‐fos by ADR in the parental drug‐sensitive MCF‐7 cells suggested a link between c‐fos and MDR phenotype. Down‐regulation of c‐fos expression via shRNA resulted in sensitization of MCF‐7/ADR cells to chemotherapeutic agents, including both P‐gp and non‐P‐gp substrates. Further results proved that c‐fos down‐regulation in MCF‐7/ADR cells resulted in decreased P‐gp expression and activity, enhanced apoptosis, and altered expression of apoptosis‐associated proteins (i.e., Bax, Bcl‐2, p53, and PUMA). All above facts indicate that c‐fos is involved in both P‐gp‐ and anti‐apoptosis‐mediated MDR of MCF‐7/ADR cells. Based on these results, we propose that c‐fos may represent a potential molecular target for resistant cancer therapy, and suppressing c‐fos gene expression may therefore be an effective means to temper breast cancer cell's MDR to cytotoxic chemotherapy. J. Cell. Biochem. 114: 1890–1900, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
由MDR1基因过度表达所引起的肿瘤细胞对化疗药物的耐药性,是导致化疗失败的主要原因之一.针对MDR1中一段包含转录启始位点、翻译启始位点和转录正调控区的序列,设计了反义RNA并将其克隆到逆转录病毒载体pLXSN上.用脂质体包裹载体导入MDR1高表达的耐药细胞KBv200中,在反义RNA转染的细胞中,MDR1在mRNA和蛋白水平的表达都有下降,细胞内药物的浓度有所提高,对长春新碱、阿霉素的耐药性分别下降了65%和47%.实验结果表明,反义RNA对MDR1的表达有抑制作用,从而使肿瘤细胞内的药物浓度升高,其耐药程度下降.  相似文献   

6.
LysoTracker and MitoTracker Red are fluorescent probes widely used for viable cell staining of lysosomes and mitochondria, respectively. They are utilized to study organelle localization and their resident proteins, assess organelle functionality and quantification of organelle numbers. The ATP‐driven efflux transporter P‐glycoprotein (P‐gp) is expressed in normal and malignant tissues and extrudes structurally distinct endogenous and exogenous cytotoxic compounds. Thus, once aromatic hydrophobic compounds such as the above‐mentioned fluorescent probes are recognized as transport substrates, efflux pumps including P‐gp may abolish their ability to reach their cellular target organelles. Herein, we show that LysoTracker and MitoTracker Red are expelled from P‐gp‐overexpressing cancer cells, thus hindering their ability to fluorescently mark target organelles. We further demonstrate that tariquidar, a potent P‐gp transport inhibitor, restores LysoTracker and MitoTracker Red cell entry. We conclude that LysoTracker and MitoTracker Red are P‐gp transport substrates, and therefore, P‐gp expression must be taken into consideration prior to cellular applications using these probes. Importantly, as MitoTracker was a superior P‐gp substrate than LysoTracker Red, we discuss the implications for the future design of chemotherapeutics evading cancer multidrug resistance. Furthermore, restoration of MitoTracker Red fluorescence in P‐gp‐overexpressing cells may facilitate the identification of potent P‐gp transport inhibitors (i.e. chemosensitizers).  相似文献   

7.
8.
Multidrug resistance (MDR) is a critical problem in the chemotherapy of cancers. Human hepatocellular carcinoma (HCC) responds poorly to chemotherapy owing to its potent MDR. Chemotherapeutic drugs primarily act by inducing apoptosis of cancer cells, and defects in apoptosis may result in MDR. Mitochondrial permeability transition (mPT) is implicated as an important event in the control of cell death or survival and mPT represents a target for the development of cytotoxic drugs. This study aimed to investigate the effects of selective opener (Atractyloside glycoside, ATR) and inhibitor (Cyclosporine A, CsA) of mitochondrial permeability transition pore (mPTP) on a CDDP-resistant HCC cell line (SK-Hep1 cells). In this study, a stable MDR phenotype characterization of SK-Hep1 cell line (SK-Hep1/CDDP cells) was established and used to investigate the role of mPTP in MDR. Results suggested that ATR accelerated the decrease of mitochondrial membrane potential (ΔΨm), reduced the Bax activity, and increased the apoptosis of SK-Hep1/CDDP cells; while CsA inhibited mPTP opening, reduced and delayed the decline of mitochondrial membrane potential, and increased the Bax activity, leading to increased tolerance of SK-Hep1/CDDP cells to apoptosis induction. However, mPTP activity had no effect on the expression of MDR1 in cells,meanwhile the P-gp translocation to mitochondria was increased, and functionally activated. In conclusion, selective modulation of mPTP can affect MDR in human HCC cells. Therefore, activation of mPTP may provide a new strategy to sensitize cancer cells to chemotherapeutic drugs and to reverse the MDR in cancer cells.  相似文献   

9.
The purpose of the present study was to investigate the effect of salidroside (Sal) on myocardial injury in lipopolysaccharide (LPS)‐induced endotoxemic in vitro and in vivo. SD rats were randomly divided into five groups: control group, LPS group (15 mg/kg), LPS plus dexamethasone (2 mg/kg), LPS plus Sal groups with different Sal doses (20, 40 mg/kg). Hemodynamic measurement and haematoxylin and eosin staining were performed. Serum levels of creatine kinase (CK), lactate dehydrogenase, the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH‐px), glutathione, tumour necrosis factor‐α (TNF‐α), interleukin‐6 (IL‐6), and interleukin‐1β (IL‐1β) were measured after the rats were killed. iNOS, COX‐2, NF‐κB and PI3K/Akt/mTOR pathway proteins were detected by Western blot. In vitro, we evaluated the protective effect of Sal on rat embryonic heart‐derived myogenic cell line H9c2 induced by LPS. Reactive oxygen species (ROS) in H9c2 cells was measured by flow cytometry, and the activities of the antioxidant enzymes CAT, SOD, GSH‐px, glutathione‐S‐transferase, TNF‐α, IL‐6 and IL‐1β in cellular supernatant were measured. PI3K/Akt/mTOR signalling was examined by Western blot. As a result, Sal significantly attenuated the above indices. In addition, Sal exerts pronounced cardioprotective effect in rats subjected to LPS possibly through inhibiting the iNOS, COX‐2, NF‐κB and PI3K/Akt/mTOR pathway in vivo. Furthermore, the pharmacological effect of Sal associated with the ROS‐mediated PI3K/Akt/mTOR pathway was proved by the use of ROS scavenger, N‐acetyl‐l ‐cysteine, in LPS‐stimulated H9C2 cells. Our results indicated that Sal could be a potential therapeutic agent for the treatment of cardiovascular disease.  相似文献   

10.
11.
Mitochondria are key organelles in mammary cells in responsible for a number of cellular functions including cell survival and energy metabolism. Moreover, mitochondria are one of the major targets under doxorubicin treatment. In this study, low‐abundant mitochondrial proteins were enriched for proteomic analysis with the state‐of‐the‐art two‐dimensional differential gel electrophoresis (2D‐DIGE) and matrix‐assistant laser desorption ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) strategy to compare and identify the mitochondrial protein profiling changes in response to the development of doxorubicin resistance in human uterine cancer cells. The mitochondrial proteomic results demonstrate more than fifteen hundred protein features were resolved from the equal amount pooled of three purified mitochondrial proteins and 101 differentially expressed spots were identified. In which, 39 out of these 101 identified proteins belong to mitochondrial proteins. Mitochondrial proteins such as acetyl‐CoA acetyltransferase (ACAT1) and malate dehydrogenase (MDH2) have not been reported with the roles on the formation of doxorubicin resistance in our knowledge. Further studies have used RNA interference and cell viability analysis to evidence the essential roles of ACAT1 and MDH2 on their potency in the formation of doxorubicin resistance through increased cell viability and decreased cell apoptosis during doxorubicin treatment. To sum up, our current mitochondrial proteomic approaches allowed us to identify numerous proteins, including ACAT1 and MDH2, involved in various drug‐resistance‐forming mechanisms. Our results provide potential diagnostic markers and therapeutic candidates for the treatment of doxorubicin‐resistant uterine cancer.  相似文献   

12.
用膜片钳,反义寡核苷酸,免疫荧光及激光共聚焦显微镜等技术,研究MDR1基因在牛睫状体色素上皮(pigmented ciliary epithelial,PCE)细胞容积激活性氯电流中的作用,PCE细胞表达MDR1基因产物-P糖蛋白(P-gp),反义MDR1寡核苷酸抑制MDR1基因的表达(P-gp免疫荧光减少93%),延缓容积激活性氯电流的出现(潜伏期延长109%),并导致激活率降低62%及电流峰值减小56%,而核酸转染剂阳离子脂质体和非配对性的寡核苷酸对电流没有显著性影响,上述观察结果表明,睫状体色素上皮细胞容积激活性氯电流与内源性MDR1表达有关。  相似文献   

13.
14.
Organochlorine (OC) pesticides constitute a major class of persistent and toxic organic pollutants, known to modulate drug‐detoxifying enzymes. In the present study, OCs were demonstrated to also alter the activity and expression of human hepatic drug transporters. Activity of the sinusoidal influx transporter OCT1 (organic cation transporter 1) was thus inhibited by endosulfan, chlordane, heptachlor, lindane, and dieldrine, but not by dichlorodiphenyltrichloroethane isomers, whereas those of the canalicular efflux pumps MRP2 (multidrug resistance‐associated protein 2) and BCRP (breast cancer resistance protein) were blocked by endosulfan, chlordane, heptachlor, and chlordecone; this latter OC additionally inhibited the multidrug resistance gene 1 (MDR1)/P‐glycoprotein (P‐gp) activity. OCs, except endosulfan, were next found to induce MDR1/P‐gp and MRP2 mRNA expressions in hepatoma HepaRG cells; some of them also upregulated BCRP. By contrast, expression of sinusoidal transporters was not impaired (organic anion‐transporting polypeptide (OATP) 1B1 and OATP2B1) or was downregulated (sodium taurocholate co‐transporting polypeptide (NTCP) and OCT1). Such regulations of drug transporter activity and expression, depending on the respective nature of OCs and transporters, may contribute to the toxicity of OC pesticides.  相似文献   

15.
We investigated the reversal effect of afatinib (AFT) on activity of adriamycin (ADR) in A549T cells and clarified the related molecular mechanisms. A549T cells overexpressing P‐glycoprotein (P‐gp) were resistant to anticancer drug ADR. AFT significantly increased the antitumor activity of ADR in A549T cells. AFT increased the intracellular concentration of ADR by inhibiting the function and expression of P‐gp at mRNA and protein levels in A549T cells. Additionally, the reversal effect of AFT on P‐gp mediated multidrug resistance (MDR) might be related to the inhibition of PI3K/Akt pathway. Cotreatment with AFT and ADR could enhance ADR‐induced apoptosis and autophagy in A549T cells. Meanwhile, the co‐treatment significantly induced cell apoptosis and autophagy accompanied by increased expression of cleaved caspase‐3, PARP, LC3B‐II, and beclin 1. Apoptosis inhibitors had no significant effect on cell activity, while autophagy inhibitors decreased cell viability, suggesting that autophagy may be a self protective mechanism of cell survival in the absence of chemotherapy drugs. Interestingly, when combined with AFT and ADR, inhibition of apoptosis and/or autophagy could enhance cell viability. These results indicated that in addition to inhibit P‐gp, ADR‐induced apoptosis, and autophagy promoted by AFT contributed to the antiproliferation effect of combined AFT and ADR on A549T cells. These findings provide evidence that AFT combined ADR may achieve a better therapeutic effect to lung cancer in clinic. J. Cell. Biochem. 119: 414–423, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

16.
Summary. Multidrug resistance (MDR) has been studied extensively because it is one of major problems in cancer chemotherapy. The MDR phenotype is often due to overexpression of P-glycoprotein (P-gp), that acting as an energy-dependent drug efflux pump exports various anticancer drugs out of cells. The major goal of our investigation is to establish whether bovine serum amine oxidase (BSAO), which generates the products H2O2 and aldehyde(s), from the polyamine spermine, is able to overcome MDR of human cancer cells. The cytotoxicity of the products was evaluated in both drug-sensitive (LoVo WT) and drug-resistant (LoVo DX) colon adenocarcinoma cells. A clonogenic cell survival assay demonstrated that LoVo DX cells were more sensitive than LoVo WT cells. Exogenous catalase protected cells against cytotoxicity mainly due to the formation of H2O2. However, spermine-derived aldehyde(s) still induced some cytotoxicity. The cytotoxic effect was totally inhibited in the presence of both enzymes, catalase and NAD-dependent aldehyde dehydrogenase (ALDH). Transmission electron microscopy investigations showed that BSAO and spermine induced evident mitochondria alterations, more pronounced in MDR than in LoVo WT cells. The mitochondrial activity was checked by flow cytometry studies, labelling cells with the probe JC1, that displayed a basal hyperpolarized status of the mitochondria in multidrug-resistant cells. After treatment with amine oxidase in the presence of polyamine-spermine, the cells showed a marked increase in mitochondrial membrane depolarization higher in LoVo DX than in LoVo WT cells. Our findings suggest that toxic oxidation products formed from spermine and BSAO could be a powerful tool in the development of new anticancer treatments, mainly against MDR tumor cells.  相似文献   

17.
Epidermal growth factor (EGF) and their receptor (EGFR) play an important role in the development of cancer proliferation, and metastasis, although the mechanism remains unclear. The present study aimed at investigating the role of EGF‐EGFR signalling pathway in the development of human hepatocellular carcinoma (HCC) inflammatory environment. Gene profiles of inflammatory cytokines from HCC were measured. Cell bio‐behaviours of HCC with low or high metastasis were detected by the live cell monitoring system. Cell proliferation was measured by CCK8. The protein level of CXCL5 and CXCL8 was measured by ELISA. The phosphorylation of PI3K, ERK, MAPK was measured by western blot. EGF significantly induced cell proliferation in HepG2 cells, but not in HCCLM3 cells. EGF prompted the cell movement in both HepG2 and HCCLM3 and regulated the production of CXCL5 and CXCL8 from HCC, which were inhibited by EGFR inhibitor, Erk inhibitor (U0126), or PI3K inhibitors (BEZ‐235 and SHBM1009). HCC proliferation, metastasis and production of inflammatory cytokines were regulated via EGF‐EGFR signal pathways. CXCL5 could interact with CXCL8, possibly by CXCR2 or the cross‐talk between CXCR2 and EGFR. EGF‐EGFR signaling pathway can be the potential target of therapies for HCC.  相似文献   

18.
19.
The aim of the present study was to investigate the effects of di‐ and sesquiterpenoids isolated from the pods of Sindora sumatrana Miq. (Leguminosae) on P‐glycoprotein (P‐gp) function in an adriamycin‐resistant human breast cancer cell line, MCF‐7/ADR. Over‐expression of P‐gp is known to be one of the mechanisms involved in multidrug resistance (MDR), which is a major obstacle in clinical cancer treatment. Among six di‐ and sesquiterpenoids extracted from S. sumatrana, (+)‐7β‐acetoxy‐15,16‐epoxycleroda‐3,13(16),14‐trien‐18‐oic acid ( 1 ) showed a strong P‐gp inhibitory effect, as great as that of verapamil, a representative P‐gp inhibitor. Compound 1 enhanced daunomycin accumulation more than fourfold and significantly decreased daunomycin efflux compared with control, resulting in a decrease in the IC50 value for daunomycin. These results suggest that compound 1 inhibits the functioning of P‐gp and, therefore, can be developed as an MDR‐reversing agent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号